Advertisement
Advancing the neuroscience of ADHD| Volume 57, ISSUE 11, P1377-1384, June 01, 2005

Neurobiology of Executive Functions: Catecholamine Influences on Prefrontal Cortical Functions

      The prefrontal cortex guides behaviors, thoughts, and feelings using representational knowledge, i.e., working memory. These fundamental cognitive abilities subserve the so-called executive functions: the ability to inhibit inappropriate behaviors and thoughts, regulate our attention, monitor our actions, and plan and organize for the future. Neuropsychological and imaging studies indicate that these prefrontal cortex functions are weaker in patients with attention-deficit/hyperactivity disorder and contribute substantially to attention-deficit/hyperactivity disorder symptomology. Research in animals indicates that the prefrontal cortex is very sensitive to its neurochemical environment and that small changes in catecholamine modulation of prefrontal cortex cells can have profound effects on the ability of the prefrontal cortex to guide behavior. Optimal levels of norepinephrine acting at postsynaptic α-2A-adrenoceptors and dopamine acting at D1 receptors are essential to prefrontal cortex function. Blockade of norepinephrine α-2-adrenoceptors in prefrontal cortex markedly impairs prefrontal cortex function and mimics most of the symptoms of attention-deficit/hyperactivity disorder, including impulsivity and locomotor hyperactivity. Conversely, stimulation of α-2-adrenoceptors in prefrontal cortex strengthens prefrontal cortex regulation of behavior and reduces distractibility. Most effective treatments for attention-deficit/hyperactivity disorder facilitate catecholamine transmission and likely have their therapeutic actions by optimizing catecholamine actions in prefrontal cortex.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anderson S.W.
        • Bechara A.
        • Damasio H.
        • Tranel D.
        • Damasio A.R.
        Impairment of social and moral behavior related to early damage in human prefrontal cortex.
        Nat Neurosci. 1999; 2: 1032-1037
        • Aoki C.
        • Venkatesan C.
        • Go C.-G.
        • Forman R.
        • Kurose H.
        Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons.
        Cereb Cortex. 1998; 8: 269-277
        • Arnsten A.F.T.
        • Cai J.X.
        • Goldman-Rakic P.S.
        The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects.
        J Neurosci. 1988; 8: 4287-4298
        • Arnsten A.F.T.
        • Contant T.A.
        Alpha-2 adrenergic agonists decrease distractability in aged monkeys performing a delayed response task.
        Psychopharmacology. 1992; 108: 159-169
        • Arnsten A.F.T.
        • Goldman-Rakic P.S.
        Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates.
        Science. 1985; 230: 1273-1276
        • Arnsten A.F.T.
        • Goldman-Rakic P.S.
        Noise stress impairs prefrontal cortical cognitive function in monkeys.
        Arch Gen Psychiatry. 1998; 55: 362-369
        • Arnsten A.F.T.
        • Murphy B.L.
        • Merchant K.
        The selective dopamine D4 receptor antagonist, PNU-101387G, prevents stress-induced cognitive deficits in monkeys.
        Neuropsychopharmacology. 2000; 23: 405-410
        • Arnsten A.F.T.
        • Steere J.C.
        • Hunt R.D.
        The contribution of alpha-2 noradrenergic mechanisms to prefrontal cortical cognitive function.
        Arch Gen Psychiatry. 1996; 53: 448-455
        • Aron A.R.
        • Dowson J.H.
        • Sahakian B.J.
        • Robbins T.W.
        Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2003; 54: 1465-1468
        • Aron A.R.
        • Robbins T.W.
        • Poldrack R.A.
        Inhibition and the right inferior frontal cortex.
        Trends Cogn Sci. 2004; 8: 170-177
        • Avery R.A.
        • Franowicz J.S.
        • Studholme C.
        • van Dyck C.H.
        • Arnsten A.F.T.
        The alpha-2A-adenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task.
        Neuropsychopharmacology. 2000; 23: 240-249
        • Barkley R.A.
        ADHD and the Nature of Self-Control. Guilford Press, New York1997
        • Bartus R.T.
        • Levere T.E.
        Frontal decortication in rhesus monkeys.
        Brain Res. 1977; 119: 233-248
        • Bedard A.C.
        • Ickowicz A.
        • Logan G.D.
        • Hogg-Johnson S.
        • Schachar R.
        • Tannock R.
        Selective inhibition in children with attention-deficit hyperactivity disorder off and on stimulant medication.
        J Abnorm Child Psychol. 2003; 31: 315-327
        • Birnbaum S.G.
        • Gobeske K.T.
        • Auerbach J.
        • Taylor J.R.
        • Arnsten A.F.T.
        A role for norepinephrine in stress-induced cognitive deficits.
        Biol Psychiatry. 1999; 46: 1266-1274
        • Birnbaum S.G.
        • Podell D.M.
        • Arnsten A.F.T.
        Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats.
        Pharmacol Biochem Behav. 2000; 67: 397-403
        • Brozoski T.
        • Brown R.M.
        • Rosvold H.E.
        • Goldman P.S.
        Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey.
        Science. 1979; 205: 929-931
        • Bunge S.A.
        • Ochsner K.N.
        • Desmond J.E.
        • Glover G.H.
        • Gabrieli J.D.
        Prefrontal regions involved in keeping information in and out of mind.
        Brain. 2001; 124: 2074-2086
        • Bymaster F.P.
        • Katner J.S.
        • Nelson D.L.
        • Hemrick-Luecke S.K.
        • Threlkeld P.G.
        • Heiligenstein J.H.
        • et al.
        Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat.
        Neuropsychopharmacology. 2002; 27: 699-711
        • Cai J.X.
        • Arnsten A.F.T.
        Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys.
        J Pharmacol Exp Ther. 1997; 282: 1-7
        • Cai J.X.
        • Ma Y.
        • Xu L.
        • Hu X.
        Reserpine impairs spatial working memory performance in monkeys.
        Brain Res. 1993; 614: 191-196
        • Casey B.J.
        • Castellanos F.X.
        • Giedd J.N.
        • Marsh W.L.
        • Hamburger S.D.
        • Schubert A.B.
        • et al.
        Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 374-383
        • Castellanos F.X.
        • Giedd J.N.
        • Marsh W.L.
        • Hamburger S.D.
        • Vaituzis A.C.
        • Dickstein D.P.
        • et al.
        Quantitative brain magnetic resonance imaging in attention deficit/hyperactivity disorder.
        Arch Gen Psychiatry. 1996; 53: 607-616
        • Chappell P.B.
        • Riddle M.A.
        • Scahill L.
        • Lynch K.A.
        • Schultz R.
        • Arnsten A.
        • et al.
        Guanfacine treatment of comorbid attention deficit hyperactivity disorder and Tourette’s syndrome.
        J Am Acad Child Adolesc Psychiatry. 1995; 34: 1140-1146
        • Dias R.
        • Roberts A.
        • Robbins T.W.
        Dissociation in prefrontal cortex of affective and attentional shifts.
        Nature. 1996; 380: 69-72
        • Ernst M.
        • Zametkin A.J.
        • Matochik J.A.
        • Jons P.H.
        • Cohen R.M.
        DOPA decarboxylase activity in attention deficit disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study.
        J Neurosci. 1998; 18: 5901-5907
        • Filipek P.A.
        • Semrud-Clikeman M.
        • Steingard R.J.
        • Renshaw P.F.
        • Kennedy D.N.
        • Biederman J.
        Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls.
        Neurology. 1997; 48: 589-601
        • Franowicz J.S.
        • Kessler L.
        • Dailey-Borja C.M.
        • Kobilka B.K.
        • Limbird L.E.
        • Arnsten A.F.T.
        Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine.
        J Neurosci. 2002; 22: 8771-8777
        • French G.M.
        Locomotor effects of regional ablation of frontal cortex in rhesus monkeys.
        J Comp Physiol Psychol. 1959; 52: 18-24
        • Funahashi S.
        • Chafee M.V.
        • Goldman-Rakic P.S.
        Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task.
        Nature. 1993; 365: 753-756
        • Giedd J.N.
        • Blumenthal J.
        • Molloy E.
        • Castellanos F.X.
        Brain imaging of attention deficit/hyperactivity disorder.
        Ann N Y Acad Sci. 2001; 931: 33-49
        • Godefroy O.
        • Rousseaux M.
        Divided and focused attention in patients with lesion of the prefrontal cortex.
        Brain Cogn. 1996; 30: 155-174
        • Goldman-Rakic P.S.
        Cellular basis of working memory.
        Neuron. 1995; 14: 477-485
        • Granon S.
        • Passetti F.
        • Thomas K.L.
        • Dalley J.W.
        • Everitt B.J.
        • Robbins T.W.
        Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex.
        J Neurosci. 2000; 20: 1208-1215
        • Gross C.G.
        Locomotor activity following lateral frontal lesions in rhesus monkeys.
        J Comp Physiol Psychol. 1963; 56: 232-236
        • Gross C.G.
        • Weiskrantz L.
        Some changes in behavior produced by lateral frontal lesions in the macaque.
        in: Warren J.M. Akert K. The Frontal Granular Cortex and Behavior. McGraw-Hill, New York1964: 74-101
        • Hill D.E.
        • Yeo R.A.
        • Campbell R.A.
        • Hart B.
        • Vigil J.
        • Brooks W.
        Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children.
        Neuropsychology. 2003; 17: 496-506
        • Horrigan J.P.
        Guanfacine for PTSD nightmares.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 975-976
        • Horrigan J.P.
        • Barnhill L.J.
        Guanfacine for treatment of attention-deficit-hyperactivity disorder in boys.
        J Child Adolesc Psychopharmacol. 1995; 5: 215-223
        • Hunt R.D.
        • Arnsten A.F.T.
        • Asbell M.D.
        An open trial of guanfacine in the treatment of attention deficit hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 1995; 34: 50-54
        • Itami S.
        • Uno H.
        Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks.
        Neuroreport. 2002; 13: 2453-2457
        • Iversen S.
        • Mishkin M.
        Perseverative interference in monkeys following selective lesions of hte inferior prefrontal convexity.
        Exp Brain Res. 1970; 11: 376-386
        • Jakala P.
        • Riekkinen M.
        • Sirvio J.
        • Koivisto E.
        • Kejonen K.
        • Vanhanen M.
        • et al.
        Guanfacine, but not clonidine, improves planning and working memory performance in humans.
        Neuropsychopharmacology. 1999; 20: 460-470
        • Jakala P.
        • Sirvio J.
        • Riekkinen M.
        • Koivisto E.
        • Kejonen K.
        • Vanhanen M.
        • et al.
        Guanfacine and clonidine, alpha-2 agonists, improve paired associates learning, but not delayed matching to sample, in humans.
        Neuropsychopharmacology. 1999; 20: 119-130
        • Kates W.R.
        • Frederikse M.
        • Mostofsky S.H.
        • Folley B.S.
        • Cooper K.
        • Mazur-Hopkins P.
        • et al.
        MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome.
        Psychiatry Res. 2002; 116: 63-81
        • Kennard M.A.
        • Spencer S.
        • Fountain G.
        Hyperactivity in monkeys following lesions of the frontal lobes.
        J Neurophysiol. 1941; 4: 512-524
        • Kimberg D.Y.
        • D’Esposito M.
        • Farah M.J.
        Effects of bromocriptine on human subjects depend on working memory capacity.
        Neuroreport. 1997; 8: 3581-3585
        • Knight R.T.
        • Scabini D.
        • Woods D.L.
        Prefrontal cortex gating of auditory transmission in humans.
        Brain Res. 1989; 504: 338-342
        • Konishi S.
        • Nakajima K.
        • Uchida I.
        • Kikyo H.
        • Kameyama M.
        • Miyashita Y.
        Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI.
        Brain. 1999; 122: 981-991
        • Kuczenski R.
        • Segal D.S.
        Exposure of adolescent rats to oral methylphenidate.
        J Neurosci. 2002; 22: 7264-7271
        • Levy F.
        • Swanson J.M.
        Timing, space and ADHD.
        Aust N Z J Psychiatry. 2001; 35: 504-511
        • Li B.-M.
        • Mao Z.-M.
        • Wang M.
        • Mei Z.-T.
        Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys.
        Neuropsychopharmacology. 1999; 21: 601-610
        • Li B.-M.
        • Mei Z.-T.
        Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys.
        Behav Neural Biol. 1994; 62: 134-139
        • Ma C.-L.
        • Arnsten A.F.T.
        • Li B.-M.
        Locomotor hyperactivity induced by blockade of prefrontal cortical alpha-2-adrenoceptors in monkeys.
        Biol Psychiatry. 2005; 57: 192-195
        • Ma C.-L.
        • Qi X.-L.
        • Peng J.-Y.
        • Li B.-M.
        Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys.
        Neuroreport. 2003; 14: 1013-1016
        • MacDonald E.
        • Kobilka B.K.
        • Scheinin M.
        Gene targeting-homing in on alpha-2-adrenoceptor subtype function.
        Trends Pharmacol Sci. 1997; 18: 211-219
        • Malmo R.B.
        Interference factors in delayed response in monkeys after removal of frontal lobes.
        Neurophys. 1942; 5: 295-308
        • Manes F.
        • Sahakian B.J.
        • Clark L.
        • Rogers R.
        • Antoun N.
        • Aitken M.
        • et al.
        Decision-making processes following damage to the prefrontal cortex.
        Brain. 2002; 125: 624-639
        • Mao Z.-M.
        • Arnsten A.F.T.
        • Li B.-M.
        Local infusion of alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys.
        Biol Psychiatry. 1999; 46: 1259-1265
        • McLean A.
        • Dowson J.
        • Toone B.
        • Young S.
        • Bazanis E.
        • Robbins T.W.
        • et al.
        Characteristic neurocognitive profile associated with adult attention-deficit/hyperactivity disorder.
        Psychol Med. 2004; 34: 681-692
        • Mehta M.A.
        • Owen A.M.
        • Sahakian B.J.
        • Mavaddat N.
        • Pickard J.D.
        • Robbins T.W.
        Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain.
        J Neurosci. 2000; 20: RC651-RC656
        • Miller E.K.
        • Li L.
        • Desimone R.
        Activity of neurons in anterior inferior temporal cortex during a short-term memory task.
        J Neurosci. 1993; 13: 1460-1478
        • Morita M.
        • Nakahara K.
        • Hayashi T.
        A rapid presentation event-related functional magnetic resonance imaging study of response inhibition in macaque monkeys.
        Neurosci Lett. 2004; 356: 203-206
        • Muir J.L.
        • Everitt B.J.
        • Robbins T.W.
        The cerebral cortex of the rat and visual attentional function.
        Cereb Cortex. 1996; 6: 470-481
        • Murphy B.L.
        • Arnsten A.F.T.
        • Goldman-Rakic P.S.
        • Roth R.H.
        Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys.
        Proc Nat Acad Sci U S A. 1996; 93: 1325-1329
        • Petrides M.
        The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks.
        J Neurosci. 1986; 6: 2054-2063
        • Raine A.
        • Lencz T.
        • Bihrle S.
        • LaCasse L.
        • Colletti P.
        Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder.
        Arch Gen Psychiatry. 2000; 57: 119-127
        • Rama P.
        • Linnankoski I.
        • Tanila H.
        • Pertovaara A.
        • Carlson S.
        Medetomidine, atipamezole and guanfacine in delayed response performance of aged monkeys.
        Pharmacol Biochem Behav. 1996; 54: 1-7
        • Raskind M.A.
        • Peskind E.R.
        • Kanter E.D.
        • Petrie E.C.
        • Radant A.
        • Thompson C.
        • et al.
        Prazosin reduces nightmares and other PTSD symptoms in combat veterans.
        Am J Psychiatry. 2003; 160: 371-373
        • Rubia K.
        • Overmeyer S.
        • Taylor E.
        • Brammer M.
        • Williams S.C.R.
        • Simmons A.
        • et al.
        Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control.
        Am J Psychiatry. 1999; 156: 891-896
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Taylor E.
        Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection.
        Neuroimage. 2003; 20: 351-358
        • Sawaguchi T.
        • Goldman-Rakic P.S.
        The role of D1-dopamine receptors in working memory.
        J Neurophysiol. 1994; 71: 515-528
        • Sawaguchi T.
        • Matsumura M.
        • Kubota K.
        Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex.
        Neurosci Res. 1988; 5: 465-473
        • Scahill L.
        • Chappell P.B.
        • Kim Y.S.
        • Schultz R.T.
        • Katsovich L.
        • Shepherd E.
        • et al.
        Guanfacine in the treatment of children with tic disorders and ADHD.
        Am J Psychiatry. 2001; 158: 1067-1074
        • Solanto M.V.
        Dopamine dysfunction in AD/HD.
        Behav Brain Res. 2002; 130: 65-71
        • Sowell E.R.
        • Thompson P.M.
        • Welcome S.E.
        • Henkenius A.L.
        • Toga A.W.
        • Peterson B.S.
        Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder.
        Lancet. 2003; 362: 1699-1707
        • Steere J.C.
        • Arnsten A.F.T.
        The alpha-2A noradrenergic agonist, guanfacine, improves visual object discrimination reversal performance in rhesus monkeys.
        Behav Neurosci. 1997; 111: 1-9
        • Stuss D.T.
        • Gow C.A.
        • Hetherington C.R.
        No longer Gage.
        J Consult Clin Psychol. 1992; 60: 349-359
        • Swanson J.M.
        • Posner M.
        • Potkin S.
        • Bonforte S.
        • Youpa D.
        • Fiore C.
        • et al.
        Activating tasks for the study of visual-spatial attention in ADHD children.
        J Child Neurol. 1991; 6: S119-S127
        • Tanila H.
        • Mustonen K.
        • Sallinen J.
        • Scheinin M.
        • Riekkinen P.
        Role of alpha-2C-adrenoceptor subtype in spatial working memory as revealed by mice with targeted disruption of the alpha-2C-adrenoceptor gene.
        Eur J Neurosci. 1999; 11: 599-603
        • Tanila H.
        • Rama P.
        • Carlson S.
        The effects of prefrontal intracortical microinjections of an alpha-2 agonist, alpha-2 antagonist and lidocaine on the delayed alternation performance of aged rats.
        Brain Res Bull. 1996; 40: 117-119
        • Taylor F.B.
        • Russo J.
        Comparing guanfacine and dextroamphetamine for the treatment of adult attention deficit-hyperactivity disorder.
        J Clin Psychopharmacol. 2001; 21: 223-228
        • Thompson-Schill S.L.
        • Jonides J.
        • Marshuetz C.
        • Smith E.E.
        • D’Esposito M.
        • Kan I.P.
        • et al.
        Effects of frontal lobe damage on interference effects in working memory.
        Cogn Affect Behav Neurosci. 2002; 2: 109-120
        • Trommer B.
        • Hoeppner J.
        • Zecker S.
        The go-no go test in attention deficit disorder is sensitive to methylphenidate.
        J Child Neurol. 1991; 6: S128-S131
        • Van Tol H.H.M.
        • Bunzow J.R.
        • Guan H.-C.
        • Sunahara R.K.
        • Seeman P.
        • Niznik H.B.
        • et al.
        Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine.
        Nature. 1991; 350: 610-614
        • Wallis J.D.
        • Anderson K.C.
        • Miller E.K.
        Single neurons in prefrontal cortex encode abstract rules.
        Nature. 2001; 411: 953-956
        • Wang M.
        • Vijayraghavan S.
        • Goldman-Rakic P.S.
        Selective D2 receptor actions on the functional circuitry of working memory.
        Science. 2004; 303: 853-856
        • Wang X.
        • Zhong P.
        • Yan Z.
        Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex.
        J Neurosci. 2002; 22: 9185-9193
        • Watanabe M.
        Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. I. Relation to the stimulus.
        Brain Res Brain Res Rev. 1986; 382: 1-14
        • Wilkins A.J.
        • Shallice T.
        • McCarthy R.
        Frontal lesions and sustained attention.
        Neuropsychologia. 1987; 25: 359-365
        • Woods D.L.
        • Knight R.T.
        Electrophysiological evidence of increased distractability after dorsolateralll prefrontal lesions.
        Neurology. 1986; 36: 212-216
        • Yamaguchi S.
        • Knight R.T.
        Gating of somatosensory input by human prefrontal cortex.
        Brain Res. 1990; 521: 281-288
        • Yeo R.A.
        • Hill D.
        • Campbell R.
        • Vigil J.
        • Brooks W.M.
        Developmental instability and working memory ability in children.
        Dev Neuropsychol. 2000; 17: 143-159
        • Zahrt J.
        • Taylor J.R.
        • Mathew R.G.
        • Arnsten A.F.T.
        Supranormal stimulation of dopamine D1 receptors in the rodent prefrontal cortex impairs spatial working memory performance.
        J Neurosci. 1997; 17: 8528-8535