Advertisement
Research Article| Volume 56, ISSUE 5, P340-348, September 01, 2004

Download started.

Ok

Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder

      Background

      Prior work reported elevated gray matter (GM) lactate and Glx (glutamate + glutamine + GABA) concentrations in unmedicated patients with bipolar disorder (BP) compared with healthy controls (HC). This study examined whether lithium (Li) and valproic acid (VPA) treatment modulated these chemicals.

      Methods

      A subset of previously reported BP patients were treated with Li (n = 12, 3.6 ± 1.9 months) or VPA (n = 9, 1.4 ± 1.7 months) and compared untreated HC subjects (n = 12, 2.9 ± 2.4 months) using proton echo-planar spectroscopic imaging. Regression analyses (voxel gray/white composition by chemistry) were performed at each time point, and change scores computed. Metabolite relaxation and regions of interest (ROI) were also examined.

      Results

      Across treatment, Li-treated BP subjects demonstrated GM Glx decreases (Li–HC, p = .08; Li–VPA p = .04) and GM myo-inositol increases (Li–HC p = .07; Li–VPA p = .12). Other measures were not significant. Serum Li levels were positively correlated with Glx decreases at the trend level.

      Conclusions

      Li treatment of BP was associated with specific GM Glx decreases and myo-inositol increases. Findings are discussed in the context of cellular mechanisms postulated to underlie Li and VPA therapeutic efficacy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allison J.H.
        • Boshans R.L.
        • Hallcher L.M.
        • Packman P.M.
        • Sherman W.R.
        The effects of lithium on myo-inositol levels in layers of frontal cerebral cortex, in cerebellum, and in corpus callosum of the rat.
        J Neurochem. 1980; 34: 456-458
        • American Psychiatric Association
        Diagnostic and Statistical Manual Disorders.
        4th ed. American Psychiatric Press, Washington, DC1994
        • Antonelli T.
        • Ferioli V.
        • Lo Gallo G.
        • Tomasini M.C.
        • Fernandez M.
        • O'Connor W.T
        • et al.
        Differential effects of acute and short-term lithium administration on dialysate glutamate and GABA levels in the frontal cortex of the conscious rat.
        Synapse. 2000; 38: 355-362
        • Baldessarini R.J.
        • Tondo L.
        • Hennen J.
        Lithium treatment and suicide risk in major affective disorders.
        J Clin Psychiatry. 2003; 64: 44-52
        • Banay-Schwartz M.
        • Wajda I.J.
        • Manigault I.
        • DeGuzman T.
        • Lajtha A.
        Lithium.
        Neurochem Res. 1982; 7: 179-189
        • Baraban J.M.
        Toward a crystal-clear view of lithium's site of action.
        Proc Natl Acad Sci U S A. 1994; 91: 5738-5739
        • Baslow M.H.
        Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain.
        J Neurochem. 2000; 75: 453-459
        • Baslow M.H.
        Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review.
        Neurochem Int. 2002; 40: 295-300
        • Baslow M.H.
        N-acetylaspartate in the vertebrate brain.
        Neurochem Res. 2003; 28: 941-953
        • Baslow M.H.
        • Kitada K.
        • Suckow R.F.
        • Hungund B.L.
        • Serikawa T.
        The effects of lithium chloride and other substances on levels of brain N-acetyl-L-aspartic acid in Canavan disease–like rats.
        Neurochem Res. 2002; 27: 403-406
        • Berrettini W.H.
        • Nurnberger Jr, J.I.
        • Hare T.A.
        • Simmons-Alling S.
        • Gershon E.S.
        • Post R.M.
        Reduced plasma and CSF gamma-aminobutyric acid in affective illness.
        Biol Psychiatry. 1983; 18: 185-194
        • Brooks W.M.
        • Friedman S.D.
        • Stidley C.A.
        Reproducibility of 1H-MRS in vivo.
        Magn Reson Med. 1999; 41: 193-197
        • Cecil K.M.
        • DelBello M.P.
        • Morey R.
        • Strakowski S.M.
        Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy.
        Bipolar Disord. 2002; 4: 357-365
        • Dager S.R.
        • Friedman S.D.
        • Heide A.
        • Layton M.E.
        • Richards T.
        • Artru A
        • et al.
        Two-dimensional proton echo-planar spectroscopic imaging of brain metabolic changes during lactate-induced panic.
        Arch Gen Psychiatry. 1999; 56: 70-77
        • Dager S.R.
        • Friedman S.D.
        • Parow A.
        • Demopoulos C.
        • Stoll A.L.
        • Lyoo I.K
        • et al.
        Brain metabolic alterations in medication-free bipolar patients.
        Arch Gen Psychiatry. 2004; 61: 450-458
        • Davanzo P.
        • Thomas M.A.
        • Yue K.
        • Oshiro T.
        • Belin T.
        • Strober M
        • et al.
        Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder.
        Neuropsychopharmacology. 2001; 24: 359-369
        • Dixon J.F.
        • Hokin L.E.
        The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates.
        Proc Natl Acad Sci U S A. 1997; 94: 757-760
        • Doyle T.J.
        • Bedell B.J.
        • Narayana P.A.
        Relative concentrations of proton MR visible neurochemicals in gray and white matter in human brain.
        Magn Reson Med. 1995; 33: 755-759
        • Dunner D.L.
        Drug interactions of lithium and other antimanic/mood-stabilizing medications.
        J Clin Psychiatry. 2003; 64: 38-43
        • Frazer A.
        • Mendels J.
        • Secunda S.K.
        • Cochrane C.M.
        • Bianchi C.P.
        The prediction of brain lithium concentrations from plasma or erythrocyte measures.
        J Psychiatr Res. 1973; 10: 1-7
        • Friedman S.D.
        • Dager S.R.
        • Richards T.L.
        • Petropoulos H.
        • Posse S.
        Modeling brain compartmental lactate response to metabolic challenge.
        Psychiatry Res. 2000; 98: 55-66
        • Friedman S.D.
        • Shaw D.W.
        • Artru A.A.
        • Richards T.L.
        • Gardner J.
        • Dawson G
        • et al.
        Regional brain chemical alterations in young children with autism spectrum disorder.
        Neurology. 2003; 60: 100-107
        • Goff D.C.
        • Hennen J.
        • Lyoo I.K.
        • Tsai G.
        • Wald L.L.
        • Evins A.E
        • et al.
        Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to olanzapine.
        Biol Psychiatry. 2002; 51: 493-497
        • Goodwin F.K.
        • Fireman B.
        • Simon G.E.
        • Hunkeler E.M.
        • Lee J.
        • Revicki D.
        Suicide risk in bipolar disorder during treatment with lithium and divalproex.
        JAMA. 2003; 290: 1467-1473
        • Gruetter R.
        • Novotny E.J.
        • Boulware S.D.
        • Boulware S.D.
        • Mason G.F.
        • Rothman D.L
        • et al.
        Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose.
        J Neurochem. 1994; 63: 1377-1385
        • Gurvich N.
        • Klein P.S.
        Lithium and valproic acid.
        Pharmacol Ther. 2002; 96: 45-66
        • Guynn R.W.
        • Faillace L.A.
        The effect of the combination of lithium and haloperidol on brain intermediary metabolism in vivo.
        Psychopharmacology (Berl). 1979; 61: 155-159
        • Hamakawa H.
        • Kato T.
        • Murashita J.
        • Kato N.
        Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders.
        Eur Arch Psychiatry Clin Neurosci. 1998; 248: 53-58
        • Hamakawa H.
        • Kato T.
        • Shioiri T.
        • Inubushi T.
        • Kato N.
        Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder.
        Psychol Med. 1999; 29: 639-644
        • Hamakawa H.
        • Murashita J.
        • Yamada N.
        • Inubushi T.
        • Kato N.
        • Kato T.
        Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder.
        Psychiatry Clin Neurosci. 2004; 58: 82-88
        • Hamilton M.
        A rating scale for depression.
        J Neurol Neurosurg Psychiatry. 1960; 23: 56-62
        • Hassel B.
        • Iversen E.G.
        • Gjerstad L.
        • Tauboll E.
        Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate.
        J Neurochem. 2001; 77: 1285-1292
        • Honchar M.P.
        • Ackermann K.E.
        • Sherman W.R.
        Chronically administered lithium alters neither myo-inositol monophosphatase activity nor phosphoinositide levels in rat brain.
        J Neurochem. 1989; 53: 590-594
        • Huang W.
        • Galdzicki Z.
        • van Gelderen P.
        • Balbo A.
        • Chikhale E.G.
        • Schapiro M.B
        • et al.
        Brain myo-inositol level is elevated in Ts65Dn mouse and reduced after lithium treatment.
        Neuroreport. 2000; 11: 445-448
        • Jaeken J.
        • Casaer P.
        • Corbeel L.
        Valproate increases cerebrospinal fluid glutamine levels.
        Eur J Pediatr. 1987; 146: 91
        • Jope R.S.
        • Williams M.B.
        Lithium and brain signal transduction systems.
        Biochem Pharmacol. 1994; 47: 429-441
        • Kapetanovic I.M.
        • Yonekawa W.D.
        • Torchin C.D.
        • Kupferberg H.J.
        Effects of pharmacological manipulations on basal and newly synthesized levels of GABA, glutamate, aspartate and glutamine in mouse brain cortex.
        Biochem Pharmacol. 1988; 37: 4445-4449
        • Kato T.
        • Hamakawa H.
        • Shioiri T.
        • Murashita J.
        • Takahashi Y.
        • Takahashi S
        • et al.
        Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder.
        J Psychiatry Neurosci. 1996; 21: 248-254
        • Kato T.
        • Murashita J.
        • Kamiya A.
        • Shioiri T.
        • Kato N.
        • Inubushi T.
        Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder.
        Eur Arch Psychiatry Clin Neurosci. 1998; 248: 301-306
        • Kato T.
        • Murashita J.
        • Shioiri T.
        • Hamakawa H.
        • Inubushi T.
        Effect of photic stimulation on energy metabolism in the human brain measured by 31P-MR spectroscopy.
        J Neuropsychiatry Clin Neurosci. 1996; 8: 417-422
        • Kato T.
        • Takahashi S.
        • Shioiri T.
        • Inubushi T.
        Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy.
        J Affect Disord. 1992; 26: 223-230
        • Kato T.
        • Takahashi S.
        • Shioiri T.
        • Inubushi T.
        Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy.
        J Affect Disord. 1993; 27: 53-59
        • Ke Y.
        • Cohen B.M.
        • Lowen S.
        • Hirashima F.
        • Nassar L.
        • Renshaw P.F.
        Biexponential transverse relaxation (T(2)) of the proton MRS creatine resonance in human brain.
        Magn Reson Med. 2002; 47: 232-238
        • Leadbetter R.A.
        • Shutty Jr, M.S
        • Elkashef A.M.
        • Kirch D.G.
        • Spraggins T.
        • Cail W.S
        • et al.
        MRI changes during water loading in patients with polydipsia and intermittent hyponatremia.
        Am J Psychiatry. 1999; 156: 958-960
        • Li R.
        • El-Mallahk R.S.
        A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells.
        Neurosci Lett. 2000; 294: 147-150
        • Li X.
        • Ketter T.A.
        • Frye M.A.
        Synaptic, intracellular, and neuroprotective mechanisms of anticonvulsants.
        J Affect Disord. 2002; 69: 1-14
        • Lingam R.
        • Scott J.
        Treatment non-adherence in affective disorders.
        Acta Psychiatr Scand. 2002; 105: 164-172
        • Lyoo I.K.
        • Demopulos C.M.
        • Hirashima F.
        • Ahn K.H.
        • Renshaw P.F.
        Oral choline decreases brain purine levels in lithium-treated subjects with rapid-cycling bipolar disorder.
        Bipolar Disord. 2003; 5: 300-306
        • Lyoo I.K.
        • Renshaw P.F.
        Magnetic resonance spectroscopy.
        Biol Psychiatry. 2002; 51: 195-207
        • Manji H.K.
        • Lenox R.H.
        Signaling.
        Biol Psychiatry. 2000; 48: 518-530
        • Michael N.
        • Erfurth A.
        • Ohrmann P.
        • Arolt V.
        • Heindel W.
        • Pfeiderer B
        • et al.
        Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression.
        Psychol Med. 2003; 33: 1277-1284
        • Moore C.M.
        • Breeze J.L.
        • Gruber S.A.
        • Babb S.M.
        • Frederick B.B.
        • Villafuerte R.A
        • et al.
        Choline, myo-inositol and mood in bipolar disorder.
        Bipolar Disord. 2000; 2: 207-216
        • Moore G.J.
        • Bebchuk J.M.
        • Hasanat K.
        • Chen G.
        • Seraji-Bozorgzad N.
        • Wilds I.B
        • et al.
        Lithium increases N-acetyl-aspartate in the human brain.
        Biol Psychiatry. 2000; 48: 1-8
      1. Moore GJ, Bebchuk JM, Parrish JK, Faulk MW, Arfken CL, Strahl-Bevacqua, et al (1999): Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry 156:1902–1908.

        • Moore G.J.
        • Bebchuk J.M.
        • Wilds I.B.
        • Chen G.
        • Manji H.K.
        • Manji H.K.
        Lithium-induced increase in human brain grey matter.
        Lancet. 2000; 356: 1241-1242
        • Mora A.
        • Gonzalez-Polo R.A.
        • Fuentes J.M.
        • Soler G.
        • Centeno F.
        Different mechanisms of protection against apoptosis by valproate and Li+.
        Eur J Biochem. 1999; 266: 886-891
        • Mora A.
        • Sabio G.
        • Alonso J.C.
        • Soler G.
        • Centeno F.
        Different dependence of lithium and valproate on PI3K/PKB pathway.
        Bipolar Disord. 2002; 4: 195-200
        • Murray M.
        • Greenberg M.L.
        Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate.
        Mol Microbiol. 2000; 36: 651-661
        • O'Donnell T.
        • Rotzinger S.
        • Nakashima T.T.
        • Hanstock C.C.
        • Ulrich M.
        • Silverstone P.H.
        Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain.
        Brain Res. 2000; 880: 84-91
        • O'Donnell T.
        • Rotzinger S.
        • Ulrich M.
        • Hanstock C.C.
        • Nakashima T.T.
        • Silverstone P.H.
        Effects of chronic lithium and sodium valproate on concentrations of brain amino acids.
        Eur Neuropsychopharmacol. 2003; 13: 220-227
        • Ohara K.
        • Isoda H.
        • Suzuki Y.
        • Takehara Y.
        • Ochiai M.
        • Takeda H
        • et al.
        Proton magnetic resonance spectroscopy of the lenticular nuclei in bipolar I affective disorder.
        Psychiatry Res. 1998; 84: 55-60
        • Patsalos P.N.
        • Lascelles P.T.
        Changes in regional brain levels of amino acid putative neurotransmitters after prolonged treatment with the anticonvulsant drugs diphenylhydantoin, phenobarbitone, sodium valproate, ethosuximide, and sulthiame in the rat.
        J Neurochem. 1981; 36: 688-695
        • Petroff O.A.
        • Rothman D.L.
        • Behar K.L.
        • Hyder F.
        • Mattson R.H.
        Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures.
        Seizure. 1999; 8: 120-127
        • Pfefferbaum A.
        • Adalsteinsson E.
        • Spielman D.
        • Sullivan E.V.
        • Lim K.O.
        In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter.
        Magn Reson Med. 1999; 41: 276-284
        • Pfleiderer B.
        • Michael N.
        • Erfurth A.
        • Ohrmann P.
        • Hohmann U.
        • Wolgast M
        • et al.
        Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients.
        Psychiatry Res. 2003; 122: 185-192
        • Posse S.
        • Dager S.R.
        • Richards T.L.
        • Yuan C.
        • Ogg R.
        • Artru A.A
        • et al.
        In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance.
        Magn Reson Med. 1997; 37: 858-865
        • Provencher S.W.
        Estimation of metabolite concentrations from localized in vivo proton NMR spectra.
        Magn Reson Med. 1993; 30: 672-679
        • Renshaw P.F.
        • Joseph N.E.
        • Leigh Jr., J.S.
        Chronic dietary lithium induces increased levels of myo-inositol-1-phosphatase activity in rat cerebral cortex homogenates.
        Brain Res. 1986; 380: 401-404
        • Rosenberg D.R.
        • MacMaster F.P.
        • Keshavan M.S.
        • Fitzgerald K.D.
        • Stewart C.M.
        • Moore G.J.
        Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine.
        J Am Acad Child Adolesc Psychiatry. 2000; 39: 1096-1103
        • Sanacora G.
        • Mason G.F.
        • Rothman D.L.
        • Hyder F.
        • Ciarcia J.J.
        • Ostroff R.B
        • et al.
        Increased cortical GABA concentrations in depressed patients receiving ECT.
        Am J Psychiatry. 2003; 160: 577-579
        • Sassi R.B.
        • Nicoletti M.
        • Brambilla P.
        • Brambilla P.
        • Mallinger A.G.
        • Frank E
        • et al.
        Increased gray matter volume in lithium-treated bipolar disorder patients.
        Neurosci Lett. 2002; 329: 243-245
        • Silverstone P.H.
        • Hanstock C.C.
        • Rotzinger S.
        Lithium does not alter the choline/creatine ratio in the temporal lobe of human volunteers as measured by proton magnetic resonance spectroscopy.
        J Psychiatry Neurosci. 1999; 24: 222-226
        • Silverstone P.H.
        • Rotzinger S.
        • Pukhovsky A.
        • Hanstock C.C.
        Effects of lithium and amphetamine on inositol metabolism in the human brain as measured by 1H and 31P MRS.
        Biol Psychiatry. 1999; 46: 1634-1641
        • Silverstone P.H.
        • Wu R.H.
        • O'Donnell T.
        • Ulrich M.
        • Asghar S.J.
        • Hanstock C.C.
        Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients.
        Hum Psychopharmacol. 2002; 17: 321-327
        • Silverstone P.H.
        • Wu R.H.
        • O'Donnell T.
        • Ulrich M.
        • Asghar S.J.
        • Hanstock C.C.
        Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetyl-aspartate concentrations in euthymic bipolar patients.
        Int Clin Psychopharmacol. 2003; 18: 73-79
        • Stoll A.L.
        • Renshaw P.F.
        • Sachs G.S.
        • Guimaraes A.R.
        • Miller C.
        • Cohen B.M
        • et al.
        The human brain resonance of choline-containing compounds is similar in patients receiving lithium treatment and controls.
        Biol Psychiatry. 1992; 32: 944-949
        • Vadnal R.
        • Parthasarathy R.
        Myo-inositol monophosphatase.
        Neuropsychopharmacology. 1995; 12: 277-285
        • Vargas C.
        • Tannhauser M.
        • Barros H.M.
        Dissimilar effects of lithium and valproic acid on GABA and glutamine concentrations in rat cerebrospinal fluid.
        Gen Pharmacol. 1998; 30: 601-604
        • Weissman M.M.
        • Bland R.C.
        • Canino G.J.
        • Faravelli C.
        • Greenwald S.
        • Hwu H.G.
        • et al.
        Cross-national epidemiology of major depression and bipolar disorder.
        JAMA. 1996; 276: 293-299
        • Wolff S.D.
        • Balaban R.S.
        Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo.
        Magn Reson Med. 1989; 10: 135-144
        • Yildiz A.
        • Demopulos C.M.
        • Moore C.M.
        • Renshaw P.F.
        • Sachs G.S.
        Effect of lithium on phosphoinositide metabolism in human brain.
        Biol Psychiatry. 2001; 50: 3-7
        • Young R.C.
        • Biggs J.T.
        • Ziegler V.E.
        • Meyer D.A.
        A rating scale for mania.
        Br J Psychiatry. 1978; 133: 429-435