Advertisement
Original article| Volume 55, ISSUE 2, P177-184, January 15, 2004

Shape of caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder

  • James J Levitt
    Affiliations
    Clinical Neuroscience Division (JJL, PGN, CCD, MMV, LJS, RWM, MES), Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, Massachusetts, USA

    Harvard Medical School (JJL, PGN, CCD, MMV, LJS, RWM, MES), Boston, Massachusetts, USA
    Search for articles by this author
  • Carl-Fredrik Westin
    Affiliations
    Surgical Planning Laboratory (C-FW, RSJE, RK, FAJ, MES), Magnetic Resonance Imaging Division, Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
    Search for articles by this author
  • Paul G Nestor
    Affiliations
    Clinical Neuroscience Division (JJL, PGN, CCD, MMV, LJS, RWM, MES), Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, Massachusetts, USA

    Harvard Medical School (JJL, PGN, CCD, MMV, LJS, RWM, MES), Boston, Massachusetts, USA
    Search for articles by this author
  • Raul S.J Estepar
    Affiliations
    Surgical Planning Laboratory (C-FW, RSJE, RK, FAJ, MES), Magnetic Resonance Imaging Division, Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
    Search for articles by this author
  • Chandlee C Dickey
    Affiliations
    Clinical Neuroscience Division (JJL, PGN, CCD, MMV, LJS, RWM, MES), Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, Massachusetts, USA

    Harvard Medical School (JJL, PGN, CCD, MMV, LJS, RWM, MES), Boston, Massachusetts, USA
    Search for articles by this author
  • Martina M Voglmaier
    Affiliations
    Clinical Neuroscience Division (JJL, PGN, CCD, MMV, LJS, RWM, MES), Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, Massachusetts, USA

    Harvard Medical School (JJL, PGN, CCD, MMV, LJS, RWM, MES), Boston, Massachusetts, USA
    Search for articles by this author
  • Larry J Seidman
    Affiliations
    Clinical Neuroscience Division (JJL, PGN, CCD, MMV, LJS, RWM, MES), Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, Massachusetts, USA

    Harvard Medical School (JJL, PGN, CCD, MMV, LJS, RWM, MES), Boston, Massachusetts, USA
    Search for articles by this author
  • Ron Kikinis
    Affiliations
    Surgical Planning Laboratory (C-FW, RSJE, RK, FAJ, MES), Magnetic Resonance Imaging Division, Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
    Search for articles by this author
  • Ferenc A Jolesz
    Affiliations
    Surgical Planning Laboratory (C-FW, RSJE, RK, FAJ, MES), Magnetic Resonance Imaging Division, Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
    Search for articles by this author
  • Robert W McCarley
    Affiliations
    Clinical Neuroscience Division (JJL, PGN, CCD, MMV, LJS, RWM, MES), Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, Massachusetts, USA

    Harvard Medical School (JJL, PGN, CCD, MMV, LJS, RWM, MES), Boston, Massachusetts, USA
    Search for articles by this author
  • Martha E Shenton
    Correspondence
    Address reprint requests to Robert W. McCarley, M.D., and Martha E. Shenton, Ph.D., Veterans Affairs Boston Health Care System–Brockton Division, Harvard Medical School, Department of Psychiatry–116A, 940 Belmont Street, Brockton MA 02301, USA.
    Affiliations
    Clinical Neuroscience Division (JJL, PGN, CCD, MMV, LJS, RWM, MES), Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, Massachusetts, USA

    Harvard Medical School (JJL, PGN, CCD, MMV, LJS, RWM, MES), Boston, Massachusetts, USA

    Surgical Planning Laboratory (C-FW, RSJE, RK, FAJ, MES), Magnetic Resonance Imaging Division, Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
    Search for articles by this author

      Abstract

      Background

      We measured the shape of the head of the caudate nucleus with a new approach based on magnetic resonance imaging (MRI) in schizotypal personality disorder (SPD) subjects in whom we previously reported decreased caudate nucleus volume. We believe MRI shape analysis complements traditional MRI volume measurements.

      Methods

      Magnetic resonance imaging scans were used to measure the shape of the caudate nucleus in 15 right-handed male subjects with SPD, who had no prior neuroleptic exposure, and in 14 matched normal comparison subjects. With MRI processing tools, we measured the head of the caudate nucleus using a shape index, which measured how much a given shape deviates from a sphere.

      Results

      In relation to comparison subjects, neuroleptic never-medicated SPD subjects had significantly higher (more “edgy”) head of the caudate shape index scores, lateralized to the right side. Additionally, for SPD subjects, higher right and left head of the caudate SI scores correlated significantly with poorer neuropsychological performance on tasks of visuospatial memory and auditory/verbal working memory, respectively.

      Conclusions

      These data confirm the value of measuring shape, as well as volume, of brain regions of interest and support the association of intrinsic pathology in the caudate nucleus, unrelated to neuroleptic medication, with cognitive abnormalities in the schizophrenia spectrum.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alexander G.E.
        • Crutcher M.D.
        • DeLong M.R.
        Basal ganglia-thalamocortical circuits.
        Prog Brain Res. 1990; 85: 119-146
        • Alexander G.E.
        • DeLong M.R.
        • Strick P.L.
        Parallel organization of functionally segregated circuits linking basal ganglia and cortex.
        Annu Rev Neurosci. 1986; 9: 357-381
        • Andreasen N.C.
        Scale for the Assessment of Negative Symptoms (SANS).
        University of Iowa, Iowa City1981
        • Andreasen N.C.
        Scale for the Assessment of Positive Symptoms (SAPS).
        University of Iowa, Iowa City1984
        • Beckmann H.
        • Lauer M.
        The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics.
        Psychiatry Res. 1997; 68: 99-109
        • Benes F.M.
        • Paskevich P.A.
        • Davidson J.
        • Domesick V.B.
        The effects of haloperidol on synaptic patterns in the rat striatum.
        Brain Res. 1985; 329: 265-273
        • Benton A.L.
        • Hamsher K.d
        • Varney N.R.
        • Spreen O.
        Contributions to Neuropsychological Assessment.
        Oxford University Press, New York1983
        • Bhatia K.P.
        • Marsden C.D.
        The behavioural and motor consequences of focal lesions of the basal ganglia in man.
        Brain. 1994; 117: 859-876
      1. Blum H (1967): A transformation for extracting new descriptors of shape. In: Walthan-Dunn W, editor. Models for the Perception of Speech and Visual Form. Cambridge, MA: MIT Press

        • Bogerts B.
        • Meertz E.
        • Schönfeldt Bausch R.
        Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage.
        Arch Gen Psychiatry. 1985; 42: 784-791
        • Bookstein F.L.
        Principal warps.
        IEEE PAMI. 1989; 11: 567-585
        • Breier A.
        • Buchanan R.W.
        • Elkashef A.
        • Munson R.C.
        • Kirkpatrick B.
        • Gellad F.
        Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures.
        Arch Gen Psychiatry. 1992; 49: 921-926
        • Buchsbaum M.S.
        • Haier R.J.
        • Potkin S.G.
        • Nuechterlein K.
        • Bracha H.S.
        • Katz M.
        • et al.
        Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics.
        Arch Gen Psychiatry. 1992; 49: 935-942
        • Cabeza R.
        • Nyberg L.
        Imaging cognitionII.
        J Cogn Neurosci. 2000; 12: 1-47
        • Calabresi P.
        • De Murtas M.
        • Bernardi G.
        The neostriatum beyond the motor function.
        Neuroscience. 1997; 78: 39-60
        • Chakos M.H.
        • Lieberman J.A.
        • Bilder R.M.
        • Borenstein M.
        • Lerner G.
        • Bogerts B.
        • et al.
        Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs.
        Am J Psychiatry. 1994; 151: 1430-1436
        • Cohen R.M.
        • Nordahl T.E.
        • Semple W.E.
        • Andreason P.
        • Litman R.E.
        • Pickar D.
        The brain metabolic patterns of clozapine- and fluphenazine-treated patients with schizophrenia during a continuous performance task.
        Arch Gen Psychiatry. 1997; 54: 481-486
        • Cootes T.F.
        • Taylor C.J.
        Combining point distribution models with shape models based on finite element analysis.
        Images Vis Computing. 1995; 13: 403-410
        • Corson P.W.
        • Nopoulos P.
        • Miller D.D.
        • Arndt S.
        • Andreasen N.C.
        Change in basal ganglia volume over 2 years in patients with schizophrenia.
        Am J Psychiatry. 1999; 156: 1200-1204
        • Csernansky J.G.
        • Joshi S.
        • Wang L.
        • Haller J.W.
        • Gado M.
        • Miller J.P.
        • et al.
        Hippocampal morphometry in schizophrenia by high dimensional brain mapping.
        Proc Natl Acad Sci U S A. 1998; 95: 11406-14011
        • Cummings J.L.
        Frontal-subcortical circuits and human behavior.
        Arch Neurol. 1993; 50: 873-880
        • Dickey C.C.
        • Shenton M.E.
        • Hirayasu Y.
        • Fischer I.
        • Voglmaier M.M.
        • Niznikiewicz M.A.
        • et al.
        Large CSF volume not attributable to ventricular volume in schizotypal personality disorder.
        Am J Psychiatry. 2000; 157: 48-54
        • First M.B.
        • Gibbon M.
        • Spitzer R.L.
        • Williams J.B.W.
        • Benjamin L.
        Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II): Interview and Questionnaire.
        American Psychiatric Press, Washington, DC1997
        • First M.B.
        • Spitzer R.L.
        • Williams J.B.W.
        • Gibbon M.
        Stuctured Clinical Interview for DSM-IV-Patient Edition (SCID-P).
        American Psychiatric Press, Washington, DC1995
        • Frumin M.
        • Golland P.
        • Kikinis R.
        • Hirayasu Y.
        • Salisbury D.F.
        • Hennen J.
        • et al.
        Shape differences in the corpus callosum in first-episode schizophrenia and first-episode psychotic affective disorder.
        Am J Psychiatry. 2002; 159: 866-868
        • Gerig G.
        • Kubler O.
        • Kikinis R.
        • Jolesz F.
        Non-linear anisotropic filtering of MRI data.
        IEEE Trans Med Imaging. 1992; 11: 221-232
      2. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, et al (2001): An integrated visualization system for surgical planning and guidance using image fusion and open MR. J Magn Reson Imaging 3:967–975.

      3. Golland P, Grimson WEL, Kikinis R (1999): Statistical Shape Analysis Using Fixed Topology Skeletons: Corpus Callosum Study. In: Kuba A, Sa’mal A, Todd-Pokropek A, editors. Lecture Notes in Computer Science 1613. New York, NY: Springer-Verlag, 382–387.

        • Heckers S.
        • Heinsen H.
        • Heinsen Y.
        • Beckmann H.
        Cortex, white matter, and basal ganglia in schizophrenia.
        Biol Psychiatry. 1991; 29: 556-566
        • Hokama H.
        • Shenton M.E.
        • Nestor P.G.
        • Kikinis R.
        • Levitt J.J.
        • Metcalf D.
        • et al.
        Caudate, putamen, and globus pallidus volume in schizophrenia.
        Psychiatry Res. 1995; 61: 209-229
        • Holcomb H.H.
        • Cascella N.G.
        • Thaker G.K.
        • Medoff D.R.
        • Dannals R.F.
        • Tamminga C.A.
        Functional sites of neuroleptic drug action in the human brain.
        Am J Psychiatry. 1996; 153: 41-49
        • Jernigan T.L.
        • Zisook S.
        • Heaton R.K.
        • Moranville J.T.
        • Hesselink J.R.
        • Braff D.L.
        Magnetic resonance imaging abnormalities in lenticular nuclei and cerebral cortex in schizophrenia.
        Arch Gen Psychiatry. 1991; 48: 881-890
        • Kawagoe R.
        • Takikawa Y.
        • Hikosaka O.
        Expectation of reward modulates cognitive signals in the basal ganglia.
        Nat Neurosci. 1998; 1: 411-416
        • Kendler K.S.
        • McGuire M.
        • Gruenberg A.M.
        • O'Hare A.
        • Spellman M.
        • Walsh D.
        The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives.
        Arch Gen Psychiatry. 1993; 50 ([see comments]): 527-540
        • Keshavan M.S.
        • Bagwell W.W.
        • Haas G.L.
        • Sweeney J.A.
        • Schooler N.R.
        • Pettegrew J.W.
        Changes in caudate volume with neuroleptic treatment.
        Lancet. 1994; 344 ([letter]): 1434
        • Konradi C.
        • Heckers S.
        Antipsychotic drugs and neuroplasticity.
        Biol Psychiatry. 2001; 50: 729-742
        • Kwon J.S.
        • Shenton M.E.
        • Hirayasu Y.
        • Salisbury D.F.
        • Fischer I.A.
        • Dickey C.C.
        • et al.
        MRI study of cavum septi pellucidi in schizophrenia, affective disorder, and schizotypal personality disorder.
        Am J Psychiatry. 1998; 155: 509-515
        • Lauer M.
        • Beckmann H.
        The human striatum in schizophrenia. I. Increase in overall relative striatal volume in schizophrenics.
        Psychiatry Res. 1997; 68: 87-98
        • Levitt J.J.
        • McCarley R.W.
        • Dickey C.C.
        • Voglmaier M.M.
        • Niznikiewicz M.A.
        • Seidman L.J.
        • et al.
        MRI study of caudate nucleus volume and its cognitive correlates in neuroleptic-naive patients with schizotypal personality disorder.
        Am J Psychiatry. 2002; 159: 1190-1197
        • Levy R.
        • Friedman H.R.
        • Davachi L.
        • Goldman-Rakic P.S.
        Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks.
        J Neurosci. 1997; 17: 3870-3882
        • Lezak M.
        Neuropsychological Assessment.
        3rd ed. Oxford University Press, New York1995
        • Manoach D.S.
        • Gollub R.L.
        • Benson E.S.
        • Searl M.M.
        • Goff D.C.
        • Halpern E.
        • et al.
        Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance.
        Biol Psychiatry. 2000; 48: 99-109
      4. Mesulam M.-M. Principles of Behavioral and Cognitive Neurology. 2nd ed. Oxford University Press, Oxford2000
        • Nopoulos P.
        • Swayze V.
        • Andreasen N.C.
        Pattern of brain morphology in patients with schizophrenia and large cavum septi pellucidi.
        J Neuropsychiatry Clin Neurosci. 1996; 8: 147-152
        • Seidman L.J.
        • Oscar-Berman M.
        • Kalinowski A.G.
        • Ajilore O.
        • Kremen W.S.
        • Faraone S.V.
        • Tsuang M.T.
        Experimental and clinical neuropsychological measures of prefrontal dysfunction in schizophrenia.
        Neuropsychology. 1995; 9: 481-490
        • Selemon L.D.
        • Rajkowska G.
        • Goldman-Rakic P.S.
        Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients.
        J Comp Neurol. 1998; 392: 402-412
        • Shenton M.E.
        • Gerig G.
        • McCarley R.W.
        • Szekely G.
        • Kikinis R.
        Amygdala-hippocampal shape differences in schizophrenia.
        Psychiatry Res. 2002; 115: 15-35
        • Shihabuddin L.
        • Buchsbaum M.S.
        • Hazlett E.A.
        • Silverman J.
        • New A.
        • Brickman A.M.
        • et al.
        Striatal size and relative glucose metabolic rate in schizotypal personality disorder and schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 877-884
        • Siever L.J.
        • Kalus O.F.
        • Keefe R.S.
        The boundaries of schizophrenia.
        Psychiatr Clin North Am. 1993; 16: 217-244
        • Thompson P.M.
        • Giedd J.N.
        • Woods R.P.
        • MacDonald D.
        • Evans A.C.
        • Toga A.W.
        Growth patterns in the developing brain detected by using continuum mechanical tensor maps.
        Nature. 2000; 404: 190-193
        • Van Essen D.C.
        A tension-based theory of morphogenesis and compact wiring in the central nervous system.
        Nature. 1997; 385: 313-318
        • Van Essen D.C.
        • Drury H.A.
        Structural and functional analyses of human cerebral cortex using a surface-based atlas.
        J Neurosci. 1997; 17: 7079-7102
        • Voglmaier M.M.
        • Seidman L.J.
        • Niznikiewicz M.A.
        • Dickey C.C.
        • Shenton M.E.
        • McCarley R.W.
        Verbal and nonverbal neuropsychological test performance in subjects with schizotypal personality disorder.
        Am J Psychiatry. 2000; 157: 787-793
        • Wang L.
        • Joshi S.C.
        • Miller M.I.
        • Csernansky J.G.
        Statistical analysis of hippocampal asymmetry in schizophrenia.
        Neuroimage. 2001; 14: 531-545