Advertisement
Neuroscience Perspectives| Volume 54, ISSUE 8, P771-776, October 15, 2003

Download started.

Ok

Alternative splicing in the nervous system: an emerging source of diversity and regulation

  • Christopher J Lee
    Correspondence
    Address reprint requests to Dr. Christopher J. Lee, Boyer Hall, University of California, Los Angeles, Los Angeles, CA 90095, USA.
    Affiliations
    , Molecular Biology Institute, UCLA Center for Bioinformatics, Center for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
    Search for articles by this author
  • Kris Irizarry
    Affiliations
    Molecular Biology Institute, UCLA Center for Bioinformatics, Center for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,USA
    Search for articles by this author

      Abstract

      Alternative splicing is emerging as a major mechanism of functional regulation in the human genome. Previously considered to be an unusual event, it has been detected by many genomics studies in 40%–60% of human genes. Moreover, it appears to be of central importance for neuronal genes and other genes involved in “information processing” functions. In this review, we will summarize alternative splicing’s effects on mRNA transcripts, protein products, biological function, and human disease, focusing on genes of neuropsychiatric interest. We will also describe the latest experimental methods and database resources that can help neuroscientists make use of alternative splicing in their own research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Buee L.
        • Bussiere T.
        • Buee-Scherrer V.
        • Delacourte A.
        • Hof P.R.
        Tau protein isoforms, phosphorylation and role in neurodegenerative disorders.
        Brain Res Rev. 2000; 33: 95-130
        • Chevalier B.S.
        • Stoddard B.L.
        Homing endonucleases.
        Nucleic Acids Res. 2001; 29: 3757-3774
        • Claeysen S.
        • Sebben M.
        • Becamel C.
        • Bockaert J.
        • Dumuis A.
        Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity.
        Mol Pharmacol. 1999; 55: 910-920
        • Clark F.
        • Thanaraj T.A.
        Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.
        Hum Mol Genet. 2002; 11: 451-464
        • Clark T.A.
        • Sugnet C.W.
        • Ares M.J.
        Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays.
        Science. 2002; 296: 907-910
        • Consortium I.H.G.S.
        Initial sequencing and analysis of the human genome.
        Nature. 2001; 409: 860-921
        • D’Souza I.
        • Schellenberg G.D.
        Determinants of 4-repeat tau expression.
        J Biol Chem. 2000; 275: 17700-17709
        • Francesconi A.
        • Duvoisin R.M.
        Alternative Splicing Unmasks Dendritic and Axonal Targeting Signals in Metabotropic Glutamate Receptor 1.
        J Neurosci. 2002; 22: 2196-2205
        • Grabowski P.J.
        • Black D.L.
        Alternative RNA splicing in the nervous system.
        Prog Neurobiol. 2001; 65: 289-308
        • Jatkoe T
        • Balaban D
        • Thomas J
        • Hu G.K.
        • Madore S.J.
        • Moldover B.
        • et al.
        Predicting splice variant from DNA chip expression data.
        Genome Res. 2001; 11: 1237-1245
        • Jelitai M.
        • Schlett K.
        • Varju P.
        • Eisel U.
        • Madarasz E.
        Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation.
        J Neurobiol. 2002; 51: 54-65
        • Ji H.
        • Zhou Q.
        • Wen F.
        • Xia H.
        • Lu X.
        • Li Y.
        AsMamDB.
        Nucleic Acids Res. 2001; 29: 260-263
        • Kan Z.
        • Rouchka E.C.
        • Gish W.R.
        • States D.J.
        Gene structure prediction and alternative splicing analysis using genomically aligned ESTs.
        Genome Res. 2001; 11: 889-900
        • Kent W.J.
        • Zahler A.M.
        The intronerator.
        Nucleic Acids Res. 2000; 28: 91-93
        • Kilpatrick G.J.
        • Dautzenberg F.M.
        • Martin G.R.
        • Eglen R.M.
        7TM receptors.
        Trends Pharmacol Sci. 1999; 20: 294-301
        • Kitayama S.
        • Kumagai K.
        • Morita K.
        • Doho T.
        Identification and functional characterization of the novel isoforms of bovine norepinephrine transporter produced by alternative splicing.
        Brain Res. 2002; 934: 152-156
        • Lee C.
        • Atanelov L.
        • Modrek B.
        • Xing Y.
        ASAP.
        Nucleic Acids Res. 2003; 31: 101-105
        • Lin Z.
        • Lin Y.
        • Schorge S.
        • Pan J.Q.
        • Beierlein M.
        • Lipscombe D.
        Alternative Splicing of a Short Cassette Exon in a1B Generates Functionally Distinct N-Type Calcium Channels in Central and Peripheral Neurons.
        J Neurosci. 1999; 19: 5322-5331
        • Lykke-Anderson J.
        mRNA quality control.
        Curr Biol. 2001; 11: R88-R91
        • Mangan M.E.
        • Frazer K.S.
        An extensive list of genes that produce alternative transcripts in the mouse.
        Bioinformatics. 1999; 15: 170-171
        • Maniatis T.
        • Tanis B.
        Alternative pre-mRNA splicing and proteome expansion in metazoans.
        Nature. 2002; 418: 236-243
        • Modrek B.
        • Lee C.
        A genomic view of alternative splicing.
        Nature Genet. 2002; 30: 13-19
        • Modrek B.
        • Resch A.
        • Grasso C.
        • Lee C.
        Genome-wide analysis of alternative splicing using human expressed sequence data.
        Nucleic Acids Res. 2001; 29: 2850-2859
        • Quinlan J.J.
        • Firestone L.L.
        • Homanics G.E.
        Mice lacking the long splice variant of the gamma 2 subunit of the GABA(A) receptor are more sensitive to benzodiazepines.
        Pharmacol Biochem Behav. 2000; 66: 371-374
        • Schacher S.
        • Wu F.
        • Sun Z.Y.
        • Wang D.
        Cell-Specific Changes in Expression of mRNAs Encoding Splice Variants of Aplysia Cell Adhesion Molecule Accompany Long-Term Synaptic Plasticity.
        J Neurobiol. 2000; 45: 152-161
        • Worby C.A.
        • Xiao J.
        • Muda M
        • Schmucker D.
        • Clemens J.C.
        • Shu H.
        • et al.
        Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity.
        Cell. 2000; 101: 671-684
        • Smith C.W.J.
        • Valcarcel J.
        Alternative pre-mRNA splicing.
        TIBS. 2000; 25: 381-388
        • Wilhelmsen K.C.
        The tangled biology of tau.
        Proc Natl Acad Sci U S A. 1999; 96: 7120-7121
        • Xu Q.
        • Modrek B.
        • Lee C.
        Genome-wide detection of tissue-specific alternative splicing in the human transcriptome.
        Nucleic Acids Res. 2002; 30: 3754-3766
        • Yeakley J.M.
        • Fan J.B.
        • Doucet D.
        • et al.
        Profiling alternative splicing on fiber-optic arrays.
        Nature Biotech. 2002; 20: 353-358