Advertisement
Research Article| Volume 54, ISSUE 7, P744-750, October 01, 2003

Focal and lateralized subcortical abnormalities in unipolar major depressive disorder: an automated multivoxel proton magnetic resonance spectroscopy study

      Abstract

      Background

      The results of prior proton magnetic resonance spectroscopy (1H-MRS) studies in unipolar major depressive disorder (MDD) evaluating choline (Cho)/creatine (Cr) and N-acetyl-L-aspartate (NAA)/Cr ratios are mixed. These single-voxel or one-dimensional chemical-shift imaging (CSI) nonautomated 1H-MRS studies has been unable to evaluate global or lateralized abnormalities in neuronal or membrane function. Using automated multivoxel two-dimensional CSI 1H-MRS techniques, we tested the hypothesis that patients with MDD have focal neuronal and membrane abnormalities localized in the subcortical region.

      Methods

      Whole brain and subcortical measures of Cho, NAA, Cr, and myo-inositol (mI) were obtained in 18 patients with MDD and 20 control subjects using automated two-dimensional CSI 1H-MRS.

      Results

      Compared with control subjects, MDD patients had a significantly lower mean NAA/Cr amplitude in the caudate and a significantly higher mean Cho/Cr amplitude in the putamen, particularly on the right side. No differences were observed for global whole brain measurements.

      Conclusions

      The findings support reduced neuronal viability or function in the caudate and altered membrane phospholipid metabolism in the putamen for patients with MDD. Our results are consistent with prior magnetic resonance imaging, positron emission tomography, and postmortem reports of focal and lateralized abnormalities of the basal ganglia in MDD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alexander G.E.
        • DeLong M.R.
        • Strick P.L.
        Parallel organization of functionally segregated circuits linking basal ganglia and cortex.
        Ann Rev Neurosci. 1986; 9: 357-381
        • Baumann B.
        • Danos P.
        • Krell D.
        • Diekmann S.
        • Leschinger A.
        • Stauch R.
        • et al.
        Reduced volume of limbic system-affiliated basal ganglia in mood disorders.
        J Neuropsychiatry Clin Neurosci. 1999; 11: 71-78
        • Baxter Jr, L.R.
        • Phelps M.E.
        • Mazziotta J.C.
        • Schwartz J.M.
        • Gerner R.H.
        • Selin C.E.
        • et al.
        Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18.
        Arch Gen Psychiatry. 1985; 42: 441-447
        • Brown T.R.
        • Kincaid B.M.
        • Ugurbil K.
        NMR chemical shift imaging in three dimensions.
        Proc Natl Acad Sci U S A. 1982; 79: 3523-3526
        • Bustillo J.R.
        • Rowland L.M.
        • Lauriello J.
        • Petropoulos H.
        • Hammond R.
        • Hart B.
        • et al.
        High choline concentrations in the caudate nucleus in antipsychotic-naive patients with schizophrenia.
        Am J Psychiatry. 2002; 159: 130-133
        • Carson A.J.
        • MacHale S.
        • Allen K.
        • Lawrie S.M.
        • Dennis M.
        • House A.
        • et al.
        Depression after stroke and lesion location.
        Lancet. 2000; 356: 122-126
        • Charles H.C.
        • Lazeyras F.
        • Krishnan K.R.
        • Boyko O.B.
        • Payne M.
        • Moore D.
        Brain choline in depression.
        Prog Neuropsychopharmacol Biol Psychiatry. 1994; 18: 1121-1127
        • Charles H.C.
        • Lazeyras F.
        • Tupler L.A.
        • Krishnan K.R.
        Reproducibility of high spatial resolution proton magnetic resonance spectroscopic imaging in the human brain.
        Magn Reson Med. 1996; 35: 606-610
        • Davidson R.J.
        Cerebral asymmetry, emotion, and affective style.
        in: Davidson RJ Hugdahl K Brain Asymmetry. MIT Press, Cambridge, MA1995: 361-387
        • Drevets W.C.
        Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression.
        Prog Brain Res. 2000; 126: 413-431
        • Drevets W.C.
        Neuroimaging and neuropathological studies of depression.
        Curr Opin Neurobiol. 2001; 11: 240-249
        • Drevets W.C.
        • Gautier C.
        • Price J.C.
        • Kupfer D.J.
        • Kinahan P.E.
        • Grace A.A.
        • et al.
        Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria.
        Biol Psychiatry. 2001; 49: 81-96
        • Drevets W.C.
        • Videen T.O.
        • Price J.L.
        • Preskorn S.H.
        • Carmichael S.T.
        • Raichle M.E.
        A functional anatomical study of unipolar depression.
        J Neurosci. 1992; 12: 3628-3641
        • Dupont R.M.
        • Jernigan T.L.
        • Heindel W.
        • Butters N.
        • Shafer K.
        • Wilson T.
        • et al.
        Magnetic resonance imaging and mood disorders. Localization of white matter and other subcortical abnormalities.
        Arch Gen Psychiatry. 1995; 52: 747-755
        • Eastwood M.R.
        • Rifat S.L.
        • Nobbs H.
        • Ruderman J.
        Mood disorder following cerebrovascular accident.
        Br J Psychiatry. 1989; 154: 195-200
        • Fox N.A.
        • Calkins S.D.
        • Bell M.A.
        • Fox N.A.
        Neural plasticity and development in the first two years of life.
        Dev Psychopathol. 1994; 6: 677-696
        • Frahm J.
        • Bruhn H.
        • Gyngell M.L.
        • Merboldt K.D.
        • Hanicke W.
        • Sauter R.
        Localized high-resolution proton NMR spectroscopy using stimulated echoes.
        Magn Reson Med. 1989; 9: 79-93
        • Frey R.
        • Metzler D.
        • Fischer P.
        • Heiden A.
        • Scharfetter J.
        • Moser E.
        • et al.
        Myo-inositol in depressive and healthy subjects determined by frontal 1H-magnetic resonance spectroscopy at 1.5 tesla.
        J Psychiatr Res. 1998; 32: 411-420
        • Gupta R.K.
        • Bhatia V.
        • Poptani H.
        • Gujral R.B.
        Brain metabolite changes on in vivo proton magnetic resonance spectroscopy in children with congenital hypothyroidism.
        J Pediatr. 1995; 126: 389-392
        • Hamakawa H.
        • Kato T.
        • Murashita J.
        • Kato N.
        Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders.
        Eur Arch Psychiatry Clin Neurosci. 1998; 248: 53-58
        • Husain M.M.
        • McDonald W.M.
        • Doraiswamy P.M.
        • Figiel G.S.
        • Na C.
        • Escalona P.R.
        • et al.
        A magnetic resonance imaging study of putamen nuclei in major depression.
        Psychiatry Res. 1991; 40: 95-99
        • Jung R.E.
        • Brooks W.M.
        • Yeo R.A.
        • Chiulli S.J.
        • Weers D.C.
        • Sibbitt Jr, W.L.
        Biochemical markers of intelligence.
        Proc R Soc Lond B Biol Sci. 1999; 266: 1375-1379
        • Kato T.
        • Inubushi T.
        • Kato N.
        Magnetic resonance spectroscopy in affective disorders.
        J Neuropsychiatry Clin Neurosci. 1998; 10: 133-147
        • Krishnan K.R.
        • McDonald W.M.
        • Doraiswamy P.M.
        • Tupler L.A.
        • Husain M.
        • Boyko O.B.
        • et al.
        Neuroanatomical substrates of depression in the elderly.
        Eur Arch Psychiatry Clin Neurosci. 1993; 243: 41-46
        • Krishnan K.R.
        • McDonald W.M.
        • Escalona P.R.
        • Doraiswamy P.M.
        • Na C.
        • Husain M.M.
        • et al.
        Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations.
        Arch Gen Psychiatry. 1992; 49: 553-557
        • Lyoo I.K.
        • Renshaw P.F.
        Magnetic resonance spectroscopy.
        Biol Psychiatry. 2002; 51: 195-207
        • Martinot M.
        • Bragulat V.
        • Artiges E.
        • Dolle F.
        • Hinnen F.
        • Jouvent R.
        • et al.
        Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation.
        Am J Psychiatry. 2001; 158: 314-316
        • Matthews P.M.
        • Francis G.
        • Antel J.
        • Arnold D.L.
        Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis.
        Neurology. 1991; 41: 1251-1256
        • Miller B.L.
        A review of chemical issues in 1H NMR spectroscopy.
        NMR Biomed. 1991; 4: 47-52
        • Miller B.L.
        • Chang L.
        • Booth R.
        • Ernst T.
        • Cornford M.
        • Nikas D.
        • et al.
        In vivo 1H MRS choline.
        Life Sci. 1996; 58: 1929-1935
        • Moore G.J.
        • Bebchuk J.M.
        • Parrish J.K.
        • Faulk M.W.
        • Arfken C.L.
        • Strahl-Bevacqua J.
        • et al.
        Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness.
        Am J Psychiatry. 1999; 156: 1902-1908
        • Narayana P.A.
        • Johnston D.
        • Flamig D.P.
        In vivo proton magnetic resonance spectroscopy studies of human brain.
        Magn Reson Imaging. 1991; 9: 303-308
        • Nikolaus S.
        • Larisch R.
        • Beu M.
        • Vosberg H.
        • Muller-Gartner H.W.
        Diffuse cortical reduction of neuronal activity in unipolar major depression.
        Nucl Med Commun. 2000; 21: 1119-1125
        • Parashos I.A.
        • Tupler L.A.
        • Blitchington T.
        • Krishnan K.R.
        Magnetic-resonance morphometry in patients with major depression.
        Psychiatry Res. 1998; 84: 7-15
        • Pillay S.S.
        • Renshaw P.F.
        • Bonello C.M.
        • Lafer B.C.
        • Fava M.
        • Yurgelun-Todd D.
        A quantitative magnetic resonance imaging study of caudate and lenticular nucleus gray matter volume in primary unipolar major depression.
        Psychiatry Res. 1998; 84: 61-74
        • Pohjasvaara T.
        • Leppavuori A.
        • Siira I.
        • Vataja R.
        • Kaste M.
        • Erkinjuntti T.
        Frequency and clinical determinants of poststroke depression.
        Stroke. 1998; 29: 2311-2317
        • Rasgon N.L.
        • Thomas M.A.
        • Guze B.H.
        • Fairbanks L.A.
        • Yue K.
        • Curran J.G.
        • et al.
        Menstrual cycle-related brain metabolite changes using 1H magnetic resonance spectroscopy in premenopausal women.
        Psychiatry Res. 2001; 106: 47-57
        • Renshaw P.F.
        • Lafer B.
        • Babb S.M.
        • Fava M.
        • Stoll A.L.
        • Christensen J.D.
        • et al.
        Basal ganglia choline levels in depression and response to fluoxetine treatment.
        Biol Psychiatry. 1997; 41: 837-843
        • Robinson R.G.
        • Kubos K.L.
        • Starr L.B.
        • Rao K.
        • Price T.R.
        Mood disorders in stroke patients. Importance of location of lesion.
        Brain. 1984; 107: 81-93
        • Schneider E.
        • Glover G.
        Rapid in vivo proton shimming.
        Magn Reson Med. 1991; 18: 335-347
        • Soares J.C.
        • Mann J.J.
        The anatomy of mood disorders—review of structural neuroimaging studies.
        Biol Psychiatry. 1997; 41: 86-106
        • Steingard R.J.
        • Yurgelun-Todd D.A.
        • Hennen J.
        • Moore J.C.
        • Moore C.M.
        • Vakili K.
        • et al.
        Increased orbitofrontal cortex levels of choline in depressed adolescents as detected by in vivo proton magnetic resonance spectroscopy.
        Biol Psychiatry. 2000; 48: 1053-1061
        • Tsai G.
        • Coyle J.T.
        N-acetylaspartate in neuropsychiatric disorders.
        Prog Neurobiol. 1995; 46: 531-540
        • Urenjak J.
        • Williams S.R.
        • Gadian D.G.
        • Noble M.
        Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.
        J Neurosci. 1993; 13: 981-989
        • Valenzuela M.J.
        • Sachdev P.
        Magnetic resonance spectroscopy in AD.
        Neurology. 2001; 56: 592-598