Original article| Volume 53, ISSUE 7, P585-592, April 01, 2003

Download started.


Cannabis-sensitive dopaminergic markers in postmortem central nervous system: changes in schizophrenia

  • Brian Dean
    Address reprint requests to Brian Dean, The Rebecca L. Cooper Research Laboratories, Mental Health Research Institute of Victoria, Locked Bag 11, Parkville, Victoria3052Australia.
    The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria, Australia
    Search for articles by this author
  • Robyn Bradbury
    The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria, Australia
    Search for articles by this author
  • David Leon Copolov
    The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria, Australia
    Search for articles by this author



      This study investigated if changes in pre-synaptic markers on dopaminergic neurons (dopamine transporter [DAT], tyrosine hydroxylase [TH]) were present in the caudate from subjects with schizophrenia who had Δ9(−)tetrahydrocannabinol (THC) in their blood at autopsy. These changes were posited because animal studies show that treatment with THC decreases dopamine uptake and TH in the striatum.


      Studies utilized caudate, obtained postmortem, from 14 schizophrenic and 14 control subjects. [3H]mazindol binding to caudate, measured using autoradiography, was taken as a measure of DAT; TH levels were estimated using an antihuman TH antibody and Western blotting.


      There was decreased [3H]mazindol binding to DAT in the caudate from the schizophrenic subjects with no detectable blood THC levels (THC(−)) compared with THC(−) control subjects (mean ± SEM: 240 ± 19 vs. 296 ± 14 fmol/mg estimated tissue equivalents, p = .01). There were no significant differences between levels of DAT in the caudate from schizophrenic and control subjects that had THC in their blood. Tyrosine hyroxylase was not different in any diagnostic cohort.


      Our data suggests that DAT is decreased in the caudate from THC(−) subjects with schizophrenia, a change that may be reversed by ingesting THC from cannabis.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Allard P.
        • Eriksson K.
        • Ross S.B.
        • Marcusson J.O.
        Unaltered [3H]GBR-12935 binding after chronic treatment with dopamine active drugs.
        Psychopharmacology (Berl). 1990; 102: 291-294
        • Amara S.G.
        Neurotransmitter transporters.
        Ann Rev Neurosci. 1993; 16: 73-93
        • Ameri A.
        The effects of cannabinoids on the brain.
        Prog Neurobiol. 1999; 58: 315-348
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition. American Psychiatric Association, Washington, DC1994
        • Ase A.R.
        • Amdiss F.
        • Hebert C.
        • Huang N.
        • van Gelder N.M.
        • Reader T.A.
        Effects of antipsychotic drugs on dopamine and serotonin contents and metabolites, dopamine and serotonin transporters, and serotonin1A receptors.
        J Neural Transm. 1999; 106: 75-105
        • Bonnin A.
        • de Miguel R.
        • Castro J.G.
        • Ramos J.A.
        • Fernandez-Ruiz J.J.
        Effects of perinatal exposure to delta 9-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain.
        J Mol Neurosci. 1996; 7: 291-308
        • Cadogan A.K.
        • Alexander S.P.
        • Boyd E.A.
        • Kendall D.A.
        Influence of cannabinoids on electrically evoked dopamine release and cyclic AMP generation in the rat striatum.
        J Neurochem. 1997; 69: 1131-1137
        • Dean B.
        • Hussain T.P.
        Studies on dopaminergic and GABAergic markers in caudate-putamen reveals a decrease in the dopamine transporter in schizophrenia.
        Schizophr Res. 2001; 52: 107-114
        • Dean B.
        • Sundram S.
        • Bradbury R.
        • Copolov D.L.
        Studies on [3H]CP-55940 binding in the human central nervous system.
        Neuroscience. 2001; 103: 9-15
        • Gessa G.L.
        • Melis M.
        • Muntoni A.L.
        • Diana M.
        Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors.
        Eur J Pharmacol. 1998; 341: 39-44
        • Hernandez M.L.
        • Garcia-Gil L.
        • Berrendero F.
        • Ramos J.A.
        • Fernandez-Ruiz J.J.
        Delta 9-tetrahydrocannabinol increases activity of tyrosine hydroxylase in cultured fetal mesencephalic neurons.
        J Mol Neurosci. 1997; 8: 83-91
        • Hill C.
        • Roberts S.
        • Keks N.A.
        • Dean B.
        • Mackinnon A.
        • Copolov D.L.
        Diagnostic Instrument for Brain Studies. Mental Health Research Institute, Melbourne1996
        • Hollister L.E.
        Health aspects of cannabis.
        Int J Neuropsychopharmacol. 1998; 1: 71-80
        • Horn A.S.
        Dopamine uptake.
        Prog Neurobiol. 1990; 34: 387-400
        • Javitch J.A.
        • Blaustein R.O.
        • Snyder S.H.
        [3H]mazindol binding associated with neuronal dopamine uptake sites in corpus striatum membranes.
        Eur J Pharmacol. 1983; 90: 461-462
        • Johns A.
        Psychiatric effects of cannabis.
        Br J Psychiatry. 2001; 178: 116-122
        • Joyce J.N.
        • Lexow N.
        • Bird E.
        • Winokur A.
        Organization of dopamine D1 and D2 receptors in the human striatum.
        Synapse. 1988; 2: 546-557
        • Laakso A.
        • Bergman J.
        • Haaparanta M.
        • Vilkman H.
        • Solin O.
        • Syvalahti E.
        • Hietala J.
        Decreased striatal dopamine transporter binding in vivo in chronic schizophrenia.
        Schizophr Res. 2001; 52: 115-120
        • Laakso A.
        • Vilkman H.
        • Alakare B.
        • Haaparanta M.
        • Bergman J.
        • Solin O.
        • et al.
        Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography.
        Am J Psychiatry. 2000; 157: 269-271
        • Laruelle M.
        • Abi-Dargham A.
        • van Dyck C.
        • Gil R.
        • D’Souza D.C.
        • Krystal J.
        • et al.
        Dopamine and serotonin transporters in patients with schizophrenia.
        Biol Psychiatry. 2000; 47: 371-379
        • Lavalaye J.
        • Linszen D.H.
        • Booij J.
        • Dingemans P.M.
        • Reneman L.
        • Habraken J.B.
        • et al.
        Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT.
        Schizophr Res. 2001; 47: 59-67
        • Leweke F.M.
        • Giuffrida A.
        • Wurster U.
        • Emrich H.M.
        • Piomelli D.
        Elevated endogenous cannabinoids in schizophrenia.
        Neuroreport. 1999; 10: 1665-1669
        • Mallet J.
        The TiPS/TINS lecture. Catecholamines.
        Trends Pharmacol Sci. 1996; 17: 129-135
        • Meltzer H.Y.
        • Stahl S.M.
        The dopamine hypothesis of schizophrenia.
        Schizophr Bull. 1976; 2: 19-76
        • Reader T.A.
        • Ase A.R.
        • Huang N.
        • Hebert C.
        • van Gelder N.M.
        Neuroleptics and dopamine transporters.
        Neurochem Res. 1998; 23: 73-80
        • Risch S.C.
        Pathophysiology of schizophrenia and the role of newer antipsychotics.
        Pharmacotherapy. 1996; 16: 11-14
        • Rodbard D.
        Mathematics and statistics of ligand assays.
        in: Langan J. Clapp J.J. Ligand Assay: Analysis of International Developments on Isotopic and Nonisotopic Immunoassay. Masson, New York1981: 55-101
        • Rodriguez D.F.
        • Cebeira M.
        • Hernandez M.L.
        • Ramos J.A.
        • Fernandez-Ruiz J.J.
        Changes in brain dopaminergic indices induced by perinatal exposure to cannabinoids in rats.
        Brain Res Dev Brain Res. 1990; 51: 237-240
        • Sakurai-Yamashita Y.
        • Kataoka Y.
        • Fujiwara M.
        • Mine K.
        • Ueki S.
        Delta 9-tetrahydrocannabinol facilitates striatal dopaminergic transmission.
        Pharmacol Biochem Behav. 1989; 33: 397-400
        • Schoemaker H.
        • Pimoule C.
        • Arbilla S.
        • Scatton B.
        • Javoy-Agid F.
        • Langer S.Z.
        Sodium dependent [3H]cocaine binding associated with dopamine uptake sites in the rat striatum and human putamen decrease after dopaminergic denervation and in Parkinson’s disease.
        Naunyn Schmiedebergs Arch Pharmacol. 1985; 329: 227-235
        • Solowij N.
        Cannabis and Cognitive Functioning. Cambridge University Press, Cambridge1998
        • Soulsby B.
        Drug Equivalents for Neuroleptics, Antide-pressants and Benzodiazepines. Mental Health Research Institute of Victoria, Melbourne1999
        • Tarazi F.I.
        • Zhang K.
        • Baldessarini R.J.
        Olanzapine, quetiapine, and risperidone.
        Neurosci Lett. 2000; 287: 81-84
        • Torack R.M.
        • Morris J.C.
        Tyrosine hydroxylase-like (TH) immunoreactivity in Parkinson’s disease and Alzheimer’s disease.
        J Neural Transm Park Dis Dement Sect. 1992; 4: 165-171
        • Yoshimoto K.
        • Irizawa Y.
        • Komura S.
        Rapid postmortem changes of rat striatum dopamine, serotonin, and their metabolites as monitored by brain microdialysis.
        Forensic Sci Int. 1993; 60: 183-188