Advertisement
Original article| Volume 52, ISSUE 7, P708-715, October 01, 2002

Download started.

Ok

Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins

      Abstract

      Background: Postmortem studies have provided evidence for abnormalities of the γ-aminobutyric acid (GABA)-ergic system in schizophrenia, including deficits of GABA-containing interneurons. The calcium-binding proteins parvalbumin, calbindin, and calretinin can be used as markers for specific subpopulations of cortical GABAergic interneurons.
      Methods: Following our previous observation of a reduction in the density of parvalbumin- but not calretinin-immunoreactive cells in the prefrontal cortex (Brodmann area 10) in schizophrenia, we have quantified the laminar density of neurons immunoreactive for the calcium-binding proteins parvalbumin, calbindin, and calretinin in a further prefrontal cortical region (Brodmann area 9) in patients with schizophrenia, bipolar disorder, major depression, and in matched control subjects (each group n = 15).
      Results: Initial statistical analysis revealed reductions in the total cortical density of parvalbumin- and calbindin- but not calretinin-immunoreactive neurons in schizophrenia relative to control subjects. Further analysis comparing individual laminar densities between groups indicated that, following correction for multiple comparisons, only a reduction in calbindin-immunoreactive neurons in cortical layer II in the schizophrenic group attained statistical significance.
      Conclusions: These findings suggest that deficits of specific GABAergic neurons, defined by the presence of calcium-binding proteins, are present in schizophrenia. Trends toward similar reductions are observed in bipolar disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akbarian S.
        • Kim J.J.
        • Potkin S.G.
        • Hagman J.O.
        • Tafazzoli A.
        • Bunney Jr, W.E.
        • et al.
        Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.
        Arch Gen Psychiatry. 1995; 52: 258-266
        • Akil M.
        • Lewis D.A.
        Postnatal development of parvalbumin immunoreactivity in axon terminals of basket and chandelier neurons in monkey neocortex.
        Prog Neuropsychopharmacol Biol Psychiatry. 1992; 16: 329-337
      1. Bachus SE, Hyde TM, Herman MM, Eyan MF, Kleinman JE (1997): Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J PsychiatrRes 31:233–256.

        • Beasley C.L.
        • Reynolds G.P.
        Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics.
        Schizophr Res. 1997; 24: 349-355
        • Benes F.M.
        • Lange N.
        Two-dimensional versus three-dimensional cell counting.
        Trends Neurosci. 2001; 24: 11-17
        • Benes F.M.
        • McSparren J.
        • Bird E.D.
        • SanGiovanni J.P.
        • Vincent S.L.
        Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients.
        Arch Gen Psychiatry. 1991; 48: 996-1001
        • Benes F.M.
        • Todtenkopf M.S.
        • Logiotatos P.
        • Williams M.
        Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain.
        J Chem Neuroanat. 2000; 20: 259-269
        • Benes F.M.
        • Vincent S.L.
        • Marie A.
        • Khan Y.
        Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects.
        Neuroscience. 1996; 74: 1021-1031
        • Carder R.
        • LeClerc S.L.
        • Hendry S.H.C.
        Regulation of calcium-binding protein immunoreactivity in GABA neurons of macaque primary visual cortex.
        Cereb Cortex. 1996; 6: 271-287
        • Celio M.R.
        Calbindin D-28K and parvalbumin in the rat nervous system.
        Neuroscience. 1990; 35: 375-475
        • Cotter D.
        • Landau S.
        • Beasley C.
        • Stevenson R.
        • Chana G.
        • MacMillan L.
        • Everall I.
        The density and spatial distribution of GABAergic neurons in the anterior cingulate cortex in major depressive disorder, bipolar disorder and schizophrenia.
        Biol Psychiatry. 2002; 51: 377-386
        • Danos P.
        • Baumann B.
        • Bernstein H.-G.
        • Franz M.
        • Stauch R.
        • Northoff G.-M.
        • et al.
        Schizophrenia and anteroventral thalamic nucleus.
        Psychiatry Res. 1998; 82: 1-10
        • Daviss S.R.
        • Lewis D.A.
        Local circuit neurons of the prefrontal cortex in schizophrenia.
        Psychiatry Res. 1995; 59: 81-96
        • DeFelipe J.
        • Hendry S.H.C.
        • Jones E.G.
        Visualisation of chandelier cell axons by parvalbumin-immunoreactivity in monkey cerebral cortex.
        Proc Natl Acad Sci USA. 1989; 86: 2093-2097
        • DeFelipe J.
        • Jones E.G.
        Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations.
        Brain Res. 1991; 562: 39-47
        • Demeulemeester H.
        • Vandesande F.
        • Orban G.A.
        • Brando C.
        Heterogeneity of GABAergic cells in cat visual cortex.
        J Neurosci. 1988; 8: 988-1000
        • Evers P.
        • Uylings H.B.
        Effects of microwave pretreatment on immunocytochemical staining of vibratome sections and tissue blocks of human cerebral cortex stored in formaldehyde fixative for long periods.
        J Neurosci Methods. 1994; 55: 163-172
        • Gabriel S.M.
        • Davidson M.
        • Haroutunian V.
        • Powchik P.
        • Bierer L.M.
        • Purohit D.P.
        • et al.
        Neuropeptide deficits in schizophrenia vs. Alzheimer’s disease cerebral cortex.
        Biol Psychiatry. 1996; 39: 82-91
        • Guidotti A.
        • Auta J.
        • Davis J.M.
        • Gerevini V.D.
        • Dwivedi Y.
        • Grayson D.R.
        • et al.
        Decrease in reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder.
        Arch Gen Psychiatry. 2000; 57: 1061-1069
        • Hanada S.
        • Mita T.
        • Nishinok N.
        • Tanaka C.
        3H-Muscimol binding sites are increased in autopsied brains of chronic schizophrenics.
        Life Sci. 1987; 40: 259-266
        • Hsu S.M.
        • Raine L.
        • Fanger H.
        Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques.
        J Histochem Cytochem. 1981; 29: 577-580
        • Jacobowitz D.M.
        • Winsky L.
        Immunocytochemical localisation of calretinin in the forebrain of the rat.
        J Comp Neurol. 1991; 304: 198-218
      2. Kalus P, Senitz D, Beckmann H (1997): Altered distribution of parvalbumin-immunoreactive local circuit neurons in the anterior cingulate cortex of schizophrenic patients. PsychiatryRes 75:49–59.

        • Kamphuis W.
        • Huisman E.
        • Wadman W.J.
        • Lopez Da Silva F.H.
        Decrease in GABA immunoreactivity and alteration of GABA metabolism after kindling in the rat hippocampus.
        Exp Brain Res. 1989; 74: 375-386
        • Lewis D.A.
        • Lund J.S.
        Heterogeneity of chandelier neurons in monkey neocortex.
        J Comp Neurol. 1990; 293: 599-615
        • Nemeroff C.B.
        • Youngblood W.W.
        • Manberg P.J.
        • Prange Jr, A.J.
        • Kizer J.S.
        Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia.
        Science. 1983; 221: 972-975
        • Rajkowska G.
        • Goldman-Rakic P.S.
        Cytoarchitectonic definition of prefrontal areas in the normal human cortex.
        Cereb Cortex. 1995; 5: 307-322
        • Reynolds G.P.
        • Beasley C.L.
        GABAergic neuronal subtypes in the human frontal cortex—development and deficits in schizophrenia.
        J Chem Neuroanat. 2001; 22: 95-100
        • Somogyi P.
        • Hodgson A.J.
        • Smith A.D.
        • Nunzi M.G.
        • Gorio A.
        • Wu J.Y.
        Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material.
        J Neurosci. 1984; 4: 2590-2603
        • Torrey E.F.
        • Webster M.
        • Knable M.
        • Johnston N.
        • Yolken R.H.
        The Stanley foundation brain collection and neuropathology consortium.
        Schizophr Res. 2000; 44: 151-155
        • Virgo L.
        • Humphries C.
        • Mortimer A.
        • Barnes T.
        • Hirsch S.
        • DeBelleroche J.
        Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizophrenia.
        Biol Psychiatry. 1995; 37: 694-701
        • Volk D.W.
        • Austin M.C.
        • Pierri J.N.
        • Sampson A.R.
        • Lewis D.A.
        Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical γ–aminobutyric acid neurons in subjects with schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 237-245
        • Woo T.U.
        • Miller J.L.
        • Lewis D.A.
        Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons.
        Am J Psychiatry. 1997; 154: 1013-1015
        • Woo T.U.
        • Whitehead R.E.
        • Melchitzky D.S.
        • Lewis D.A.
        A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia.
        Proc Natl Acad Sci USA. 1998; 95: 5341-5346
        • Zhang Z.J.
        • Reynolds G.P.
        A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia.
        Schizophr Res. 2002; 55: 1-10