Advertisement
Neuroscience perspective| Volume 50, ISSUE 12, P927-931, December 15, 2001

Download started.

Ok

The role of tissue-specific imprinting as a source of phenotypic heterogeneity in human disease

  • Lee S. Weinstein
    Correspondence
    Address reprint requests to Dr. L. S. Weinstein, NIH, National Institute of Diabetes and Digestive and Kidney Diseases, Metabolic Diseases Branch, Building 10/Room 8C101, Bethesda MD 20892-1752 USA
    Affiliations
    Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
    Search for articles by this author

      Abstract

      Genomic imprinting is an epigenetic phenomenon affecting a small number of genes that leads to expression from only one parental allele. Several imprinted genes are important for neurologic development and function and several neurobehavioral disorders are caused by genetic defects involving imprinted genes. For some genes, the imprinting is tissue specific, leading to biallelic expression in some tissues and monoallelic expression in other tissues. Defects involving these genes may produce one restricted phenotype due to loss of expression of the gene product in tissues where the gene is imprinted and, in some instances, a second phenotype due to haploinsufficiency of the gene product in tissues where it is biallelically expressed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bastepe M.
        • Lane A.H.
        • Jüppner H.
        Paternal uniparental isodisomy of chromosome 20q–and the resulting changes in GNAS1 methylation–as a plausible cause of pseudohypoparathyroidism.
        Am J Hum Genet. 2001; 68: 1283-1289
        • Bastepe M.
        • Pincus J.E.
        • Sugimoto T.
        • Tojo K.
        • Kanatani M.
        • Azuma Y.
        • et al.
        Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B.
        Hum Mol Genet. 2001; 10: 1231-1241
        • Bunzel R.
        • Blumcke I.
        • Cichon S.
        • Normann S.
        • Schramm J.
        • Propping P.
        • et al.
        Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain.
        Brain Res Mol Brain Res. 1998; 59: 90-92
        • Chatkupt S.
        • Antonowicz M.
        • Johnson W.G.
        Parents do matter.
        J Neurol Sci. 1995; 130: 1-10
        • Constancia M.
        • Pickard B.
        • Kelsey G.
        • Reik W.
        Imprinting mechanisms.
        Genome Res. 1998; 8: 881-900
        • Gould T.D.
        • Pfeifer K.
        Imprinting of mouse Kvlqt1 is developmentally regulated.
        Hum Mol Genet. 1998; 7: 483-487
        • Hayward B.E.
        • Barlier A.
        • Korbonits M.
        • Grossman A.B.
        • Jacquet P.
        • Enjalbert A.
        • et al.
        Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly.
        J Clin Invest. 2001; 107: R31-R36
        • Hayward B.E.
        • Moran V.
        • Strain L.
        • Bonthron D.T.
        Bidirectional imprinting of a single gene.
        Proc Natl Acad Sci USA. 1998; 95: 15475-15480
        • Horike S.
        • Mitsuya K.
        • Meguro M.
        • Kotobuki N.
        • Kashiwagi A.
        • Notsu T.
        • et al.
        Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome.
        Hum Mol Genet. 2000; 9: 2075-2083
        • Jinno Y.
        • Yun K.
        • Nishiwaki K.
        • Kubota T.
        • Ogawa O.
        • Reeve A.E.
        • et al.
        Mosaic and polymorphic imprinting of the WT1 gene in humans.
        Nature Genet. 1994; 6: 305-309
        • Jüppner H.
        • Schipani E.
        • Bastepe M.
        • Cole D.E.
        • Lawson M.L.
        • Mannstadt M.
        • et al.
        The gene responsible for pseudohypoparathyroidism type Ib is paternally imprinted and maps in four unrelated kindreds to chromosome 20q13.3.
        Proc Natl Acad Sci USA. 1998; 95: 11798-11803
        • Keverne E.B.
        Genomic imprinting in the brain.
        Curr Opin Neurobiol. 1997; 7: 463-468
        • Keverne E.B.
        • Fundele R.
        • Narasimha M.
        • Barton S.C.
        • Surani M.A.
        Genomic imprinting and the differential roles of parental genomes in brain development.
        Brain Res Dev Brain Res. 1996; 92: 91-100
        • Lee M.P.
        • Hu R.J.
        • Johnson L.A.
        • Feinberg A.P.
        Human KvLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements.
        Nature Genet. 1997; 15: 181-185
        • Lefebvre L.
        • Viville S.
        • Barton S.C.
        • Ishino F.
        • Keverne E.B.
        • Surani M.A.
        Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene.
        Mest Nature Genet. 1998; 20: 163-169
        • Levine M.A.
        • Downs Jr, R.W.
        • Moses A.M.
        • Breslau N.A.
        • Marx S.J.
        • Lasker R.D.
        • et al.
        Resistance to multiple hormones in patients with pseudohypoparathyroidism. Association with deficient activity of guanine nucleotide regulatory protein.
        Am J Med. 1983; 74: 545-556
        • Levine M.A.
        • Jap T.S.
        • Mauseth R.S.
        • Downs R.W.
        • Spiegel A.M.
        Activity of the stimulatory guanine nucleotide-binding protein is reduced in erythrocytes from patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism.
        J Clin Endocrinol Metab. 1986; 62: 497-502
        • Li L.-L.
        • Keverne E.B.
        • Aparicio S.A.
        • Ishino F.
        • Barton S.C.
        • Surani M.A.
        Regulation of maternal behavior and offspring growth by paternally expressed Peg3.
        Science. 1999; 284: 330-333
        • Liu J.
        • Litman D.
        • Rosenberg M.J.
        • Yu S.
        • Biesecker L.G.
        • Weinstein L.S.
        A GNAS1 imprinting defect in pseudohypoparathyroidism type IB.
        J Clin Invest. 2000; 106: 1167-1174
        • Liu J.
        • Yu S.
        • Litman D.
        • Chen W.
        • Weinstein L.S.
        Identification of a methylation imprint mark within the mouse Gnas locus.
        Mol Cell Biol. 2000; 20: 5808-5817
        • Nicholls R.D.
        The impact of genomic imprinting for neurobehavioral and developmental disorders.
        J Clin Invest. 2000; 105: 413-418
        • Paulsen M.
        • Davies K.R.
        • Bowden L.M.
        • Villar A.J.
        • Franck O.
        • Fuermann M.
        • et al.
        Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5.
        Hum Mol Genet. 1998; 7: 1149-1159
        • Reik W.
        • Walter J.
        Genomic imprinting Parental influence on the genome.
        Nature Rev Genet. 2001; 2: 21-32
        • Rougeulle C.
        • Glatt H.
        • Lalande M.
        The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain.
        Nature Genet. 1997; 17: 14-15
        • Shemer R.
        • Hershko A.Y.
        • Perk J.
        • Mostoslavsky R.
        • Tsuberi B.
        • Cedar H.
        • et al.
        The imprinting box of the Prader-Willi/Angelman syndrome domain.
        Nature Genet. 2000; 26: 440-443
        • Skuse D.H.
        Imprinting, the X-chromosome, and the male brain.
        Pediatr Res. 2000; 47: 9-16
        • Skuse D.H.
        • James R.S.
        • Bishop D.V.
        • Coppin B.
        • Dalton P.
        • Aamodt-Leeper G.
        • et al.
        Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function.
        Nature. 1997; 387: 705-708
        • Tilghman S.M.
        The sins of the fathers and mothers.
        Cell. 1999; 96: 185-193
        • Vu T.H.
        • Hoffman A.R.
        Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain.
        Nature Genet. 1997; 17: 12-13
        • Yu S.
        • Yu D.
        • Lee E.
        • Eckhaus M.
        • Lee R.
        • Corria Z.
        • et al.
        Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene.
        Proc Natl Acad Sci USA. 1998; 95: 8715-8720