Advertisement

Increased cortical kynurenate content in schizophrenia

      Abstract

      Background: Metabolites of the kynurenine pathway of tryptophan degradation may play a role in the pathogenesis of several human brain diseases. One of the key metabolites in this pathway, kynurenine, is either transaminated to form the glutamate receptor antagonist, kynurenate, or hydroxylated to 3-hydroxykynurenine, which in turn is further degraded to the excitotoxic N-methyl-d-aspartate receptor agonist quinolinate. Because a hypoglutamatergic tone may be involved in the pathophysiology of schizophrenia, it is conceivable that alterations in kynurenine pathway metabolism may play a role in the disease.
      Methods: The tissue levels of kynurenine, kynurenate, and 3-hydroxykynurenine were measured in brain tissue specimens obtained from the Maryland Brain Collection. All three metabolites were determined in the same samples from three cortical brain regions (Brodmann areas 9, 10, and 19), obtained from 30 schizophrenic and 31 matched control subjects.
      Results: Kynurenate levels were significantly increased in schizophrenic cases in Brodmann area 9 (2.9 ± 2.2 vs. 1.9 ± 1.3 pmol/mg protein, p < .05), but not in Brodmann areas 10 and 19. Kynurenine levels were elevated in schizophrenic cases in Brodmann areas 9 (35.2 ± 28.0 vs. 22.4 ± 14.3 pmol/mg protein; p < .05) and 19 (40.3 ± 23.4 vs. 30.9 ± 10.8; p < .05). No significant differences in 3-hydroxykynurenine content were observed between the two groups. In both groups, significant (p < .05) correlations were found in all three brain areas between kynurenine and kynurenate, but not between kynurenine and 3-hydroxykynurenine (p > .05). In rats, chronic (6-months) treatment with haloperidol did not cause an increase in kynurenate levels in the frontal cortex, indicating that the elevation observed in schizophrenia is not due to antipsychotic medication.
      Conclusions: The data demonstrate an impairment of brain kynurenine pathway metabolism in schizophrenia, resulting in elevated kynurenate levels and suggesting a possible concomitant reduction in glutamate receptor function.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adler L.E
        • Olincy A
        • Waldo M
        • Harris J.G
        • Griffith J
        • Stevens K
        • et al.
        Schizophrenia, sensory gating, and nicotinic receptors.
        Schizophr Bull. 1998; 24: 189-202
        • Akbarian S
        • Sucher N.J
        • Bradley D
        • Tafazzoli A
        • Trinh D
        • Hetrick W.P
        • et al.
        Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics.
        J Neurosci. 1996; 16: 19-30
        • Andreasen N.C
        • Kezai K
        • Alliger R
        • Swayze II, V.W
        • Flaum M
        • Kirchner P
        • et al.
        Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia.
        Arch Gen Psychiatry. 1992; 49: 943-958
        • Anis N.A
        • Berry S.C
        • Burton N.R
        • Lodge D
        The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate.
        Br J Pharmacol. 1983; 79: 565-575
        • Breese C.R
        • Freedman R
        • Leonard S.S
        Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers.
        Brain Res. 1995; 674: 82-90
        • Buchsbaum M.S
        • Haier R.J
        • Potkin S.G
        • Nuechterlein K
        • Bracha H.S
        • Katz M
        • et al.
        Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics.
        Arch Gen Psychiatry. 1992; 49: 935-942
        • Carlsson M
        • Carlsson A
        Schizophrenia.
        Schizophr Bull. 1990; 16: 425-432
        • Carpenedo R
        • Cozzi A
        • Lombardi G
        • Moroni F
        Kynurenic acid inhibits glutamate output in striatal dialysates.
        Soc Neurosci Abstr. 1999; 25: 2230
        • Chiarugi A
        • Carpenedo R
        • Molina M.T
        • Mattoli L
        • Pellicciari R
        • Moroni F
        Comparison of the neurochemical and behavioral effects resulting from the inhibition of kynurenine hydroxylase and/or kynureninase.
        J Neurochem. 1995; 65: 1176-1183
        • DeLisi L.E
        Is there a viral or immune dysfunction etiology to schizophrenia? Re-evaluation a decade later.
        Schizophr Res. 1996; 22: 1-4
        • Eastman C.L
        • Guilarte T.R
        Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line.
        Brain Res. 1989; 495: 225-231
        • Eastwood S.L
        • Burnet P.W.J
        • Harrison P.J
        GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia.
        Brain Res Mol Brain Res. 1997; 44: 92-98
        • Gál E.M
        • Young R.B
        • Sherman A.D
        Tryptophan loading.
        J Neurochem. 1978; 31: 237-244
        • Gao X.M
        • Hashimoto T
        • Cooper T.B
        • Tamminga C.A
        The dose-response characteristics of rat oral dyskinesias with chronic haloperidol or clozapine administration.
        J Neural Transm. 1997; 104: 97-104
        • Gao X.M
        • Sakai K
        • Roberts R.C
        • Conley R.R
        • Dean B
        • Tamminga C
        Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus.
        Am J Psychiatry. 2000; 157: 1141-1149
        • Goff D.C
        • Wine L
        Glutamate in schizophrenia.
        Schizophr Res. 1997; 27: 157-168
        • Gramsbergen J.P
        • Hodgkins P.S
        • Rassoulpour A
        • Turski W.A
        • Guidetti P
        • Schwarcz R
        Brain-specific modulation of kynurenic acid synthesis in the rat.
        J Neurochem. 1997; 69: 290-298
        • Grotta J
        • Clark W
        • Coull B
        • Pettigrew L.C
        • Mackay B
        • Goldstein L.B
        • et al.
        Safety and tolerability of the glutamate antagonist CGS 19755 (Selfotel) in patients with acute ischemic stroke. Results of a phase IIA randomized trial.
        Stroke. 1995; 26: 602-605
        • Guidetti P
        • Eastman C.L
        • Schwarcz R
        Metabolism of [5-3H]kynurenine in the rat brain in vivo.
        J Neurochem. 1995; 65: 2621-2632
        • Guidetti P
        • Okuno E
        • Schwarcz R
        Characterization of rat brain kynurenine aminotransferases I and II.
        J Neurosci Res. 1997; 50: 457-465
        • Harris C.A
        • Miranda A.F
        • Tanguay J.J
        • Boegman R.J
        • Beninger R.J
        • Jhamandas K
        Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid.
        Br J Pharmacol. 1998; 124: 391-399
        • Heresco-Levy U
        • Javitt D.C
        • Ermilov M
        • Mordel C
        • Silipo G
        • Lichtenstein M
        Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia.
        Arch Gen Psychiatry. 1999; 56: 29-36
        • Heyes M.P
        • Brew B.J
        • Saito K
        • Quearry B.J
        • Price R.W
        • Lee K
        • et al.
        Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and β2-microglobulin in cerebrospinal fluid and serum of HIV-1-infected patients.
        J Neuroimmunol. 1992; 40: 71-80
        • Heyes M.P
        • Quearry B.J
        Quantification of 3-hydroxykynurenine in brain by high performance liquid chromatography and electrochemical detection.
        J Chromatogr. 1988; 428: 340-344
        • Hodgkins P
        • Wu H.-Q
        • Zielke H.R
        • Schwarcz R
        2-Oxoacids regulate kynurenic acid production in the rat brain.
        J Neurochem. 1999; 72: 643-651
        • Holmes E.W
        Determination of serum kynurenine and hepatic tryptophan dioxygenase activity by high-performance liquid chromatography.
        Anal Biochem. 1988; 172: 518-525
        • Humphries C
        • Mortimer A
        • Hirsch S
        • de Belleroche J
        NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia.
        Neuroreport. 1996; 7: 2051-2055
        • Ishimaru M.J
        • Toru M
        The glutamate hypothesis of schizophrenia.
        CNS Drugs. 1997; 7: 47-67
        • Issa F
        • Gerhardt G.A
        • Bartko J.J
        • Suddath R.L
        • Lynch M
        • Gamache P.H
        • et al.
        A multidimensional approach to analysis of cerebrospinal fluid biogenic amines in schizophrenia.
        Psychiatr Res. 1994; 52: 237-249
        • Issa F
        • Kirch D.G
        • Gerhardt G.A
        • Bartko J.J
        • Suddath R.L
        • Freedman R
        • et al.
        A multidimensional approach to analysis of cerebrospinal fluid biogenic amines in schizophrenia.
        Psychiatr Res. 1994; 52: 251-258
        • Jauch D.A
        • Sethy V.H
        • Weick B.G
        • Chase T.N
        • Schwarcz R
        Intravenous administration of L-kynurenine to rhesus monkeys.
        Neuropharmacology. 1993; 32: 467-472
        • Joseph M.H
        • Baker H.F
        • Crow T.J
        • Riley G.J
        • Risby D
        Brain tryptophan metabolism in schizophrenia.
        Psychopharmacology. 1979; 62: 279-285
        • Kim J.S
        • Kornhuber H.H
        • Schmid-Burgk W
        • Holzmüller B
        Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia.
        Neurosci Lett. 1980; 20: 379-382
        • Krystal J.H
        • Karper L.P
        • Seibyl J.P
        • Freeman G.K
        • Delaney R
        • Bremner J.D
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Lahti A.C
        • Koffel B
        • LaPorte D
        • Tamminga C.A
        Subanesthetic doses of ketamine stimulate psychosis in schizophrenia.
        Neuropsychopharmacology. 1995; 13: 9-19
        • Leiderman E
        • Zylberman I
        • Zukin S.R
        • Cooper T.B
        • Javitt D.C
        Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia.
        Biol Psychiatry. 1996; 39: 213-215
        • Lodge D
        • Anis N.A
        • Burton N.R
        Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine.
        Neurosci Lett. 1982; 29: 281-286
        • Lowry O.H
        • Rosebrough N.J
        • Farr A.L
        • Randall R.J
        Protein measurement with the Folin phenol reagent.
        J Biol Chem. 1951; 193: 265-275
        • Miranda A.F
        • Boegman R.J
        • Beninger R.J
        • Jhamandas K
        Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid.
        Neuroscience. 1997; 78: 967-975
        • Moroni F
        Tryptophan metabolism and brain function.
        Eur J Pharmacol. 1999; 375: 87-100
        • Moroni F
        • Russi P
        • Lombardi G
        • Beni M
        • Carlà V
        Presence of kynurenic acid in the mammalian brain.
        J Neurochem. 1988; 51: 177-180
        • Muir K.W
        • Lees K.R
        Clinical experience with excitatory amino acid antagonist drugs.
        Stroke. 1995; 26: 503-513
        • Nozaki K
        • Beal M.F
        Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats.
        J Cereb Blood Flow Metab. 1992; 12: 400-407
        • Okuda S
        • Nishiyama N
        • Saito H
        • Katsuko H
        Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine.
        Proc Natl Acad Sci USA. 1996; 93: 12553-12558
        • Okuno E
        • Nakamura M
        • Schwarcz R
        Two kynurenine aminotransferases in human brain.
        Brain Res. 1991; 542: 307-312
        • Olney J.W
        • Farber N.B
        Glutamate receptor dysfunction and schizophrenia.
        Arch Gen Psychiatry. 1995; 52: 998-1007
        • Parsons C.G
        • Danysz W
        • Quack G
        • Hartmann S
        • Lorenz B
        • Wollenburg C
        • et al.
        Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor.
        J Pharmacol Exp Ther. 1997; 283: 1264-1275
        • Pellicciari R
        • Natalini B
        • Costantino G
        • Mahmoud M.R
        • Mattoli L
        • Sadeghpour B.M
        • et al.
        Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase.
        J Med Chem. 1994; 37: 647-655
        • Perkins M.N
        • Stone T.W
        An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid.
        Brain Res. 1982; 247: 184-187
        • Poeggeler B
        • Rassoulpour A
        • Guidetti P
        • Wu H.-Q
        • Schwarcz R
        Dopaminergic control of kynurenate levels and NMDA toxicity in the developing rat striatum.
        Dev Neurosci. 1998; 20: 146-153
        • Rassoulpour A
        • Ceresoli-Borroni G
        • Wu H.-Q
        • Tamminga C.A
        • Roberts R.C
        • Medoff D.R
        • et al.
        Cerebral kynurenines in schizophrenia.
        Soc Neurosci Abstr. 1998; 24: 502
        • Reinhard Jr, J.F
        • Erickson J.B
        Quinolinic acid in neurological disease.
        Adv Pharmacol. 1994; 30: 85-127
        • Schwarcz R
        • Tamminga C.A
        • Kurlan R
        • Shoulson I
        Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia.
        Ann Neurol. 1988; 24: 580-582
        • Schwarcz R
        • Whetsell Jr, W.O
        • Mangano R.M
        Quinolinic acid.
        Science. 1983; 219: 316-318
        • Speciale C
        • Cini M
        • Wu H.-Q
        • Salvati P
        • Schwarcz R
        • Molinari A
        • et al.
        Kynurenic acid-enhancing and anti-ischemic effects of the potent kynurenine 3-hydroxylase inhibitor FCE 28833 in rodents.
        in: Allegri Filippini G Costa C.V.L Bertazzo A Recent Advances in Tryptophan Research. Plenum Press, New York1996: 221-227
        • Sveinbjornsdottir S
        • Sander J.W.A.S
        • Upton D
        • Thompson P.J
        • Patsalos P.N
        • Hirt D
        • et al.
        The excitatory amino acid antagonist D-CPPene (SDZ EAA-494) in patients with epilepsy.
        Epilepsy Res. 1993; 16: 165-174
        • Swartz K.J
        • Matson W.R
        • MacGarvey U
        • Ryan E.A
        • Beal M.F
        Measurement of kynurenic acid in mammalian brain extracts and cerebrospinal fluid by high-performance liquid chromatography with fluorometric and coulometric electrode array detection.
        Anal Biochem. 1990; 185: 363-376
        • Tamminga C.A
        Schizophrenia and glutamatergic transmission.
        Crit Rev Neurobiol. 1998; 12: 21-36
        • Tamminga C.A
        • Cascella N
        • Fakouhl T.D
        • Hertin R.L
        Enhancement of NMDA-mediated transmission in schizophrenia.
        in: Meltzer H.Y Novel Antipsychotic Drugs. Raven Press, New York1992: 171-177
        • Torrey E.F
        • Yolken R.H
        • Zito M
        • Heyes M
        Increased CSF and brain quinolinic acid in schizophrenia and bipolar disorder.
        Schizophr Res. 1998; 29: 91-92
        • Tsai G
        • Passani L.A
        • Slusher B.S
        • Carter R
        • Baer L
        • Kleinman J.E
        • et al.
        Abnormal excitatory neurotransmitter metabolism in schizophrenic brains.
        Arch Gen Psychiatry. 1995; 52: 829-836
        • Tsai G
        • Yang P
        • Chung L.-C
        • Lange N
        • Coyle J.T
        D-serine added to antipsychotics for the treatment of schizophrenia.
        Biol Psychiatry. 1998; 44: 1081-1089
        • Turski W.A
        • Gramsbergen J.B.P
        • Traitler H
        • Schwarcz R
        Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine.
        J Neurochem. 1989; 52: 1629-1636
        • Turski W.A
        • Nakamura M
        • Todd W.P
        • Carpenter B.K
        • Whetsell Jr, W.O
        • Schwarcz R
        Identification and quantification of kynurenic acid in human brain tissue.
        Brain Res. 1988; 54: 164-169
        • Turski W.A
        • Schwarcz R
        On the disposition of intrahippocampally injected kynurenic acid in the rat.
        Exp Brain Res. 1988; 71: 563-567
        • Vécsei L
        • Miller J
        • MacGarvey U
        • Beal M.F
        Kynurenine and probenecid inhibit pentylenetetrazol- and NMDA-induced seizures and increase kynurenic acid concentrations in the brain.
        Brain Res Bull. 1992; 28: 233-238
        • Wu H.-Q
        • Baran H
        • Ungerstedt U
        • Schwarcz R
        Kynurenic acid in the quinolinate-lesioned rat hippocampus.
        Eur J Neurosci. 1992; 4: 1264-1270