Advertisement

Nicotinic treatment of Alzheimer’s disease

  • Paul A Newhouse
    Correspondence
    Address reprint requests to Paul A. Newhouse, M.D., University of Vermont College of Medicine, University Health Center, Department of Psychiatry, 1 South Prospect Street, Burlington VT 05401-1195
    Affiliations
    Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont USA (PAN, AP, MK)
    Search for articles by this author
  • Alexandra Potter
    Affiliations
    Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont USA (PAN, AP, MK)
    Search for articles by this author
  • Megan Kelton
    Affiliations
    Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont USA (PAN, AP, MK)

    Department of Psychology, Dartmouth College, Hanover, New Hampshire USA (MK)
    Search for articles by this author
  • June Corwin
    Affiliations
    Psychiatry Service, Manhattan Veterans Administration Medical Center, New York University School of Medicine, New York, New York USA (JC)
    Search for articles by this author
      The underlying cause(s) of Alzheimer’s disease (AD) appear to be disruption of the regulation, expression, or scavenging of abnormal membrane-associated proteins (e.g., β-amyloid leading to neurotoxicity). This neurotoxicity leads to a degeneration of a variety of neurotransmitter systems that presumably are responsible for the clinical and cognitive manifestations of the illness. Although a myriad of neurochemical deficits have been described in AD, explanation of the nature of the cognitive disturbances has been most closely focused on the “cholinergic hypothesis,” which implicates disturbances in central muscarinic cholinergic mechanisms in normal cognitive functioning and disorders of memory function (
      • Bartus R.
      • Dean R.
      • Beer B.
      • et al.
      The cholinergic hypothesis of geriatric memory dysfunction.
      ,
      • Drachman D.
      • Leavitt J.
      Human memory and the cholinergic system.
      ).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adler L.E.
        • Hoffer L.D.
        • Wiser A.
        • Freedman R.
        Normalization of auditory physiology by cigarette smoking in schizophrenic patients.
        Am J Psychiatry. 1993; 150: 1856-1861
        • Adler L.E.
        • Hoffer L.J.
        • Griffith J.
        • et al.
        Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics.
        Biol Psychiatry. 1992; 32: 607-616
        • Aisen P.S.
        • Davis K.L.
        • Berg J.D.
        • et al.
        A randomized controlled trial of prednisone in Alzheimer’s disease.
        Neurology. 2000; 54: 588-593
        • Arendash G.W.
        • Sengstock G.J.
        • Sanberg P.R.
        • Kem W.R.
        Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21.
        Brain Res. 1995; 674: 252-259
        • Arneric S.P.
        • Anderson D.
        • Bannon A.
        • et al.
        Preclinical pharmacology of ABT-418.
        CNS Drugs Rev. 1995; 1: 1-26
        • Aubert I.
        • Araujo D.M.
        • Cécyre D.
        • et al.
        Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases.
        J Neurochem. 1992; 58: 529-541
        • Baddeley A.
        Cognitive psychology and human memory.
        Trends Neurosci. 1988; 11: 176-181
        • Bartus R.
        • Dean R.
        • Beer B.
        • et al.
        The cholinergic hypothesis of geriatric memory dysfunction.
        Science. 1982; 217: 408-417
      1. Bencherif M (1999, May): Targacept compounds potentiate sub-maximal doses of tacrine and aricept. Presented at IBC 2nd International Symposium on Nicotinic Acetylcholine Receptors: Advances in Molecular Pharmacology and Drug Development, Annapolis, Maryland.

        • Brioni J.D.
        • O’Neill A.B.
        • Kim D.J.B.
        • et al.
        Anxiolytic-like effects of the novel cholinergic channel activator ABT 418.
        J Pharmacol Exp Ther. 1994; 271: 353-361
        • Buccafusco J.J.
        • Jackson W.J.
        • Terry Jr, A.V.
        • et al.
        Improvement in performance of a delayed matching-to-sample task by monkeys following ABT-418.
        Psychopharmacology. 1995; 120: 256-266
        • Drachman D.
        • Leavitt J.
        Human memory and the cholinergic system.
        Arch Neurol. 1974; 30: 113-121
        • Driscoll P.
        Nicotine-like behavioral effect after small dose of mecamylamine in Roman high-avoidance rats.
        Psychopharmacologia. 1976; 46: 119-121
        • Flynn D.
        • Mash D.
        Characterization of l-[3H]nicotine binding in human cerebral cortex.
        J Neurochem. 1986; 47: 1948-1954
        • Fryer J.D.
        • Lukas R.J.
        Noncompetitive functional inhibition at diverse, human nicotinic acetylcholine receptor subtypes by bupropion, phencyclidine, and ibogaine.
        J Pharmacol Exp Ther. 1999; 288: 88-92
        • Fujii S.
        • Jia Y.
        • Yang A.
        • Sumikawa K.
        Nicotine reverses GABAergic inhibition of long-term potentiation induction in the hippocampal CA1 region.
        Brain Res. 2000; 863: 259-265
        • Heishman S.J.
        • Taylor R.C.
        • Henningfield J.E.
        Nicotine and smoking.
        Exp Clin Psychopharmacol. 1994; 2: 345-395
        • Higgins S.T.
        • Woodward B.M.
        • Henningfield J.E.
        Effects of atropine on repeated acquisition and performance of response sequences in humans.
        J Exp Anal Behav. 1989; 51: 5-15
        • James J.R.
        • Nordberg A.
        Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders.
        Behav Genet. 1995; 25: 149-159
        • Jones G.M.M.
        • Sahakian B.J.
        • Levy R.
        • et al.
        Effects of acute subcutaneous nicotine on attention, information processing and short term memory in Alzheimer’s disease.
        Psychopharmacology. 1992; 108: 485-494
        • Kelton M.C.
        • Kahn H.J.
        • Conrath C.L.
        • Newhouse P.A.
        The effects of nicotine on Parkinson’s disease.
        Brain Cogn. 2000; 43: 274-282
        • Kihara T.
        • Shimohama S.
        • Sawada H.
        • et al.
        Nicotinic receptors stimulation protects neurons against beta-amyloid toxicity.
        Ann Neurol. 1997; 42: 159-163
        • Lipiello P.M.
        • Bencherif M.
        • Gray J.A.
        • et al.
        RJR-2403.
        J Pharmacol Exp Ther. 1996; 279: 1422-1429
        • Little J.T.
        • Johnson D.N.
        • Minichiello M.
        • et al.
        Combined nicotinic and muscarinic blockade in elderly normal volunteers.
        Neuropsychopharmacology. 1998; 19: 60-69
        • Lloyd G.K.
        • Menzaghi F.
        • Bontempi B.
        • et al.
        The potential of subtype-selective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents.
        Life Sci. 1998; 62: 1601-1606
        • Lloyd G.K.
        • Williams M.
        Neuronal nicotinic receptors as novel drug targets.
        JPET. 2000; 292: 461-467
        • Maelicke A.
        • Albuquerque E.X.
        Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease.
        Eur J Pharmacol. 2000; 393: 165-170
        • Mancuso G.
        • Andres P.
        • Ansseau M.
        • Tirelli E.
        Effects of nicotine administered via a transdermal delivery system on vigilance.
        Psychopharmacology (Berl). 1999; 142: 18-23
        • Mancuso G.
        • Warburton D.M.
        • Melan M.
        • et al.
        Selective effects of nicotine on attentional processes.
        Psychopharmacology (Berl). 1999; 146: 199-204
      2. McClure DE (1999, May): The potential therapeutic usefulness of subtype selective neuronal nicotinic acetylcholine receptor agonists for the motor, cognitive, and disease progression components of Parkinson’s disease. Presented at IBC 2nd International Symposium on Nicotinic Acetylcholine Receptors: Advances in Molecular Pharmacology and Drug Development, Annapolis, Maryland.

        • Mulnard R.A.
        • Cotman C.W.
        • Kawas C.
        • et al.
        Estrogen replacement therapy for treatment of mild to moderate Alzheimer’s disease.
        JAMA. 2000; 283: 1007-1015
      3. Newhouse PA, Kelton M (2000): Clinical aspects of nicotinic agents: Therapeutic applications in central nervous system disorders. In: Clementi F, Gotti C, Fornasari D, editors. Handbook of Experimental Pharmacology: Neuronal Nicotinic Receptors. Heidelberg, Germany: Springer, 779–812.

        • Newhouse P.A.
        • Potter A.
        • Corwin J.
        • et al.
        Acute nicotinic blockade produces cognitive impairment in normal humans.
        Psychopharmacology. 1992; 108: 480-484
        • Newhouse P.A.
        • Potter A.
        • Corwin J.
        • et al.
        Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior.
        Neuropsychopharmacology. 1994; 10: 93-107
        • Newhouse P.A.
        • Potter A.
        • Corwin J.
        • et al.
        Effects of nicotinic cholinergic agents on cognitive functioning in Alzheimer’s and Parkinson’s disease.
        Drug Dev Res. 1996; 38: 278-289
        • Newhouse P.A.
        • Potter A.
        • Lenox R.H.
        • et al.
        Effects of nicotinic agents on human cognition.
        Med Chem Res. 1993; 2: 628-642
        • Newhouse P.A.
        • Sunderland T.
        • Narang P.K.
        • et al.
        Neuroendocrine, physiologic, and behavioral responses following intravenous nicotine in nonsmoking healthy volunteers and in patients with Alzheimer’s disease.
        Psychoneuroendocrinology. 1990; 15: 471-484
        • Newhouse P.A.
        • Sunderland T.
        • Tariot P.N.
        • et al.
        Intravenous nicotine in Alzheimer’s disease.
        Psychopharmacology. 1988; 95: 171-175
        • Nordberg A.
        Effect of long-term treatment with tacrine (THA) in Alzheimer’s disease as visualized with PET.
        Acta Neurol Scand Suppl. 1993; 149: 62-65
        • Nordberg A.
        • Lundqvist H.
        • Hartvig P.
        • et al.
        Kinetic analysis of regional (S) (−) 11C-nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography.
        Alzheimer Dis Assoc Disord. 1995; 9: 21-27
        • Papke R.L.
        • Thinschmidt J.S.
        • Moulton B.A.
        • et al.
        Activation and inhibition of rat neuronal nicotinic receptors by ABT-418.
        Br J Pharmacol. 1997; 120: 429-438
        • Paterson D.
        • Nordberg A.
        Neuronal nicotinic receptors in the human brain.
        Prog Neurobiol. 2000; 61: 75-111
        • Perkins K.A.
        Baseline-dependency of nicotine effects.
        Behav Pharmacol. 1999; 10: 597-615
        • Perry E.K.
        • Morris C.M.
        • Court J.A.
        • et al.
        Alteration in nicotinic binding sites in Parkinson’s disease, Lewy body dementia, and Alzheimer’s disease.
        Neuroscience. 1995; 64: 385-395
        • Potter A.
        • Corwin J.
        • Lang J.
        • et al.
        Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease.
        Psychopharmacology. 1999; 142: 334-342
        • Prendergast M.A.
        • Jackson W.J.
        • Terry A.V.
        • et al.
        Central nicotinic receptor agonists ABT-418, ABT-089, and (−)nicotine reduce distractibility in adult monkeys.
        Psychopharmacology. 1998; 136: 50-58
        • Robbins T.W.
        • Semple J.
        • Kumar R.
        • et al.
        Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects.
        Psychopharmacology. 1997; 134: 95-106
      4. Rogers J (2000, April): Therapeutic approaches to Alzheimer’s disease inflammation. Presented at the Sixth International Stockholm/Springfield Symposium on Advances in Alzheimer Therapy, Stockholm.

        • Sahakian B.J.
        • Coull J.T.
        Nicotine and THA.
        Drug Dev Res. 1994; 31: 80-88
        • Sanberg P.R.
        • Shytle R.D.
        • Silver A.A.
        Treatment of Tourette’s syndrome with mecamylamine.
        Lancet. 1998; 352: 705-706
        • Sihver W.
        • Fasth K.J.
        • Ögren M.
        • et al.
        In vivo positron emission tomography studies on the novel nicotinic receptor agonist [11C] MP compared with [11C] ABT and (S) (−)[11C] nicotine in rhesus monkeys.
        Nucl Med Biol. 1999; 26: 633-640
        • Snaedal J.
        • Johannesson T.
        • Jonsson J.E.
        • et al.
        The effects of nicotine in dermal plaster on cognitive functions in patients with Alzheimer’s disease.
        Dementia. 1996; 7: 47-52
        • Snodgrass J.
        • Corwin J.
        Pragmatics of recognition memory.
        J Exp Psychol Gen. 1988; 117: 34-50
        • Sunderland T.
        • Tariot P.N.
        • Newhouse P.A.
        Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatric populations.
        Brain Res Rev. 1989; 12: 371-389
        • Terry A.V.
        • Buccafusco J.J.
        • Predergast M.A.
        Dose-specific improvements in memory-related performance by rats and aged monkeys administered the nicotinic-cholinergic antagonist mecamylamine.
        Drug Dev Res. 1999; 47: 127-136
        • Thal L.J.
        • Forrest M.
        • Loft H.
        • Mengel H.
        Lu 25-109, a muscarinic agonist, fails to improve cognition in Alzheimer’s disease Lu25–109 Study Group.
        Neurology. 2000; 54: 421-426
        • Warburton D.M.
        • Rusted J.M.
        Cholinergic control of cognitive resources.
        Neuropsychobiology. 1993; 28: 43-46
        • Warpman U.
        • Nordberg A.
        Epibatidine and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains.
        Neuroreport. 1995; 6: 2419-2423
        • Weinstock M.
        Selectivity of cholinesterase inhibition clinical implications for the treatment of Alzheimer’s disease.
        CNS Drugs. 1999; 4: 307-323
        • White H.K.
        • Levin E.D.
        Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease.
        Psychopharmacology. 1999; 143: 158-165
        • Whitehouse P.
        • Martino A.
        • Antuono P.
        • et al.
        Nicotinic acetylcholine binding sites in Alzheimer’s disease.
        Brain Res. 1986; 371: 146-151
        • Whitehouse P.J.
        • Hedreen J.C.
        • White C.L.
        • et al.
        Basal forebrain neurons in dementia of Parkinson’s disease.
        Ann Neurol. 1983; 13: 243-248
        • Whitehouse P.J.
        • Martino A.M.
        • Wagster M.V.
        • et al.
        Reductions in [3H] nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease.
        Neurology. 1988; 38: 720-723
        • Wilens T.
        • Biederman J.
        • Spencer T.
        • et al.
        A controlled trial of ABT-418 in attention deficit hyperactivity disorder in adults.
        Am J Psychiatry. 1998; 56: 1931-1937
        • Wilson A.L.
        • Langley L.K.
        • Monley J.
        • et al.
        Nicotine patches in Alzheimer’s disease.
        Pharmacol Biochem Behav. 1995; 51: 509-514
        • Xiang Z.
        • Huguenard J.
        • Prince D.
        Cholinergic switching within neocortical inhibitory networks.
        Science. 1998; 281: 985-988
        • Zamani M.R.
        • Allen Y.S.
        • Owen G.P.
        • Gray J.A.
        Nicotine modulates the neurotoxic effect of beta-amyloid protein (25–35) in hippocampal cultures.
        Neuroreport. 1997; 8: 513-517