Advertisement
Original article| Volume 49, ISSUE 8, P677-684, April 15, 2001

Download started.

Ok

Regional cortical white matter reductions in velocardiofacial syndrome: a volumetric MRI analysis

  • Wendy R Kates
    Correspondence
    Address reprint requests to Wendy R. Kates, Ph.D., Division of Psychiatric Neuroimaging, Johns Hopkins University School of Medicine, Meyer 3-166, 600 N. Wolfe Street, Baltimore, MD 21287
    Affiliations
    Kennedy Krieger Institute, Baltimore, Maryland, USA (WRK, CPB, MGr, WEK)

    Division of Psychiatric Neuroimaging, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (WRK, GDP)

    Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (WRK, MGr, WEK, GDP)
    Search for articles by this author
  • Courtney P Burnette
    Affiliations
    Kennedy Krieger Institute, Baltimore, Maryland, USA (WRK, CPB, MGr, WEK)
    Search for articles by this author
  • Ethylin W Jabs
    Affiliations
    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (EWJ, JR, AMM, MGe, WEK)

    Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (EWJ)

    Department of Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (EWJ)
    Search for articles by this author
  • Julie Rutberg
    Affiliations
    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (EWJ, JR, AMM, MGe, WEK)
    Search for articles by this author
  • Anne M Murphy
    Affiliations
    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (EWJ, JR, AMM, MGe, WEK)
    Search for articles by this author
  • Marco Grados
    Affiliations
    Kennedy Krieger Institute, Baltimore, Maryland, USA (WRK, CPB, MGr, WEK)

    Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (WRK, MGr, WEK, GDP)
    Search for articles by this author
  • Michael Geraghty
    Affiliations
    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (EWJ, JR, AMM, MGe, WEK)
    Search for articles by this author
  • Walter E Kaufmann
    Affiliations
    Kennedy Krieger Institute, Baltimore, Maryland, USA (WRK, CPB, MGr, WEK)

    Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (WRK, MGr, WEK, GDP)

    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (EWJ, JR, AMM, MGe, WEK)

    Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (WEK)

    Department of Neurology (WEK), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for articles by this author
  • Godfrey D Pearlson
    Affiliations
    Division of Psychiatric Neuroimaging, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (WRK, GDP)

    Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (WRK, MGr, WEK, GDP)

    Department of Mental Hygiene, Johns Hopkins University School of Public Health (GDP), Baltimore, Maryland, USA
    Search for articles by this author

      Abstract

      Background: Velocardiofacial syndrome, caused by a microdeletion on chromosome 22q.11, is associated with craniofacial anomalies, cardiac defects, learning disabilities, and psychiatric disorders. To understand how the 22q.11 deletion affects brain development, this study examined gray and white matter volumes in major lobar brain regions of children with velocardiofacial syndrome relative to control subjects.
      Methods: Subjects were ten children with velocardiofacial syndrome and ten age- and gender-matched unaffected children. Coronal images were acquired with a 3-D spoiled gradient echo series and partitioned into 124, 1.5-mm contiguous slices. A stereotaxic grid was used to subdivide brain tissue into cerebral lobes, which were segmented into gray, white, and CSF compartments using an algorithm based on intensity values and tissue boundaries. Nonparametric statistics were used to compare lobar volumes of gray and white matter.
      Results: Analyses indicated that children with velocardiofacial syndrome had significantly smaller volumes in nonfrontal, but not frontal, lobar brain regions. Volume reductions affected nonfrontal white matter to a greater extent than nonfrontal gray matter.
      Conclusions: The presence of white matter reductions may be related to disturbances in myelination or axonal integrity in velocardiofacial syndrome. Further work is required to delineate the nature and extent of white matter anomalies, and to link them to variation in the neurocognitive and neuropsychiatric phenotype of velocardiofacial syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alivisatos B.
        • Petrides M.
        Functional activation of the human brain during mental rotation.
        Neuropsychologia. 1997; 35: 111-118
        • Altman D.H.
        • Altman N.R.
        • Mitnick R.J.
        • Shprintzen R.J.
        Further delineation of brain anomalies in velo-cardio-facial syndrome.
        Am J Med Genet. 1995; 60: 174-175
        • Amelsvoort T.
        • Daly E.
        • Critchley H.
        • Robertson D.
        • Murphy K.
        • Simmons A.
        • et al.
        An MRI and fMRI study on the effect of deletions on chromosome 22 on the brain.
        Biol Psychiatry. 1999; 45: 110S
        • Andreasen N.
        • Flaum M.
        • Swayze II, V.
        • O’Leary D.
        • Alliger R.
        • Cohen G.
        • et al.
        Intelligence and brain structure in normal individuals.
        Am J Psychiatry. 1993; 150: 130-134
        • Andreasen N.C.
        • Rajarethinam R.
        • Cizadlo T.
        • Arndt S.
        • Swayze II, V.W.
        • Flashman L.A.
        • et al.
        Automatic atlas-based volume estimation of human brain regions from MR images.
        J Comput Assist Tomogr. 1996; 20: 98-106
        • Bassett A.
        • Chow E.
        22q11 deletion syndrome.
        Biol Psychiatry. 1999; 46: 882-891
        • Bingham P.M.
        • Zimmerman R.A.
        • McDonald-McGinn D.
        • Driscoll D.
        • Emanuel B.S.
        • Zackai E.
        Enlarged sylvian fissures in infants with interstitial deletion of chromosone 22q11.
        Am J Med Genet. 1997; 74: 538-543
        • Buchanan R.
        • Vladar K.
        • Barta P.
        • Pearlson G.
        Structural evaluation of the prefrontal cortex in schizophrenia.
        Am J Psychiatry. 1998; 155: 1049-1055
        • Cady E.
        • Penrice J.
        • Amess P.
        • Lorek A.
        • Wylezinska M.
        • Aldridge R.
        • et al.
        Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain.
        Magn Reson Med. 1996; 36: 878-886
        • Chow E.
        • Zipursky R.
        • Mikulis D.
        • Scutt L.
        • Weksberg R.
        • Bassett A.
        MRI findings in adults with 22q11 deletion syndrome (22qDS) and schizophrenia.
        Schizophr Res. 1999; 36: 89
        • Driscoll D.
        • Spinner N.
        • Budarf M.
        • McDonald-McGinn D.
        • Zackai E.
        • Goldberg R.
        • et al.
        Deletions and microdeletions of 22q11.2 in velocardiofacial syndrome.
        Am J Med Genet. 1992; 44: 261-268
        • du Montcel S.
        • Mendizabal H.
        • Ayme S.
        • Levy A.
        • Philip N.
        Prevalence of 22q11 microdeletion.
        J Med Genet. 1996; 33: 719
        • Edelmann L.
        • Pandita R.K.
        • Spiteri E.
        • Funke B.
        • Goldberg R.
        • Palanisamy N.
        • et al.
        A common molecular basis for rearrangement disorders on chromosome 22q11.
        Hum Mol Genet. 1999; 8: 1157-1167
        • Eliez S.
        • White C.
        • Schmitt E.
        • Menon V.
        • Reiss A.
        Children and adolescents with velocardiofacial syndrome.
        Am J Psychiatry. 2000; 157: 409-415
        • Frederikse M.
        • Lu A.
        • Aylward E.
        • Barta P.
        • Sharma T.
        • Pearlson G.
        Sex differences in inferior parietal lobule volume in schizophrenia.
        Am J Psychiatry. 2000; 157: 422-427
        • Goldberg R.
        • Motzkin B.
        • Marion R.
        • Scambler P.
        • Shprintzen R.
        Velo-cardio-facial syndrome.
        Am J Med Genet. 1993; 45: 313-319
        • Golding-Kushner K.J.
        • Weller G.
        • Shprintzen R.J.
        Velo-cardio-facial syndrome.
        J Craniofac Genet Dev Biol. 1985; 5: 259-266
        • Goto T.
        • Yoshitake A.
        • Baba T.
        • Shibata Y.
        • Sakata R.
        • Uozumi H.
        Cerebral ischemic disorders and cerebral oxygen balance during cardiopulmonary bypass surgery.
        Anesth Analg. 1997; 84: 5-11
        • Harrison P.J.
        The neuropathology of schizophrenia.
        Brain. 1999; 122: 593-624
        • Highley J.R.
        • Esiri M.M.
        • McDonald B.
        • Cortina-Borja M.
        • Herron B.M.
        • Crow T.J.
        The size and fibre composition of the corpus callosum with respect to gender and schizophrenia.
        Brain. 1999; 122: 99-110
        • Isaka Y.
        • Nagano K.
        • Narita M.
        • Ashida K.
        • Imaizumi M.
        High signal intensity on T2-weighted magnetic resonance imaging and cerebral hemodynamic reserve in carotid occlusive disease.
        Stroke. 1997; 28: 354-357
        • Kaplan D.M.
        • Liu A.M.C.
        • Abrams M.T.
        • Warsofsky I.S.
        • Kates W.R.
        • White C.D.
        • et al.
        Application of an automated parcellation method to the analysis of pediatric brain volumes.
        Psychiatry Res. 1997; 76: 15-27
        • Kates W.
        • Warsofsky I.
        • Patwardhan A.
        • Abrams M.
        • Liu A.
        • Naidu S.
        • et al.
        Automated Talairach atlas-based parcellation and measurement of cerebral lobes in children.
        Psychiatry Res. 1999; 91: 11-30
      1. Kates WR, Burnette CP, Abbott L, Denckla MB (2000, July): VCFS and non-verbal learning disability: A not-so-perfect fit. Presented at the Sixth Annual Meeting of the National Velocardiofacial Syndrome Educational Foundation, Baltimore.

        • Klingberg T.
        • Hedehus M.
        • Temple E.
        • Salz T.
        • Gabrieli J.D.
        • Moseley M.E.
        • et al.
        Microstructure of temporo-parietal white matter as a basis for reading ability.
        Neuron. 2000; 25: 493-500
        • Lim K.O.
        • Hedehus M.
        • Moseley M.
        • de Crespigny A.
        • Sullivan E.V.
        • Pfefferbaum A.
        Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging.
        Arch Gen Psychiatry. 1999; 56: 367-374
        • Mega M.
        • Cummings J.
        Frontal-subcortical circuits and neuropsychiatric disorders.
        J Neuropsychiatry Clin Neurosci. 1994; 6: 358-370
        • Mitnick R.
        • Bello J.A.
        • Shprintzen R.
        Brain anomalies in velo-cardio-facial syndrome.
        Am J Med Genet. 1994; 54: 100-106
        • Moss E.M.
        • Batshaw M.L.
        • Solot C.B.
        • Gerdes M.
        • McDonald-McGinn D.M.
        • Driscoll D.A.
        • et al.
        Psychoeducational profile of the 22q11.2 microdeletion.
        J Pediatr. 1999; 134: 193-198
        • Murphy K.C.
        • Jones L.A.
        • Owen M.J.
        High rates of schizophrenia in adults with velo-cardio-facial syndrome.
        Arch Gen Psychiatry. 1999; 56: 940-945
        • Ozeren A.
        • Acarturk E.
        • Koc F.
        • Demir M.
        • Sarica Y.
        • Eroglu H.
        Silent cerebral lesions on magnetic resonance imaging in subjects with coronary artery disease.
        Jpn Heart J. 1998; 39: 611-618
        • Papolos D.F.
        • Faedda G.L.
        • Veit S.
        • Goldberg R.
        • Morrow B.
        • Kucherlapati R.
        • et al.
        Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome.
        Am J Psychiatry. 1996; 153: 1541-1547
        • Pearlson G.D.
        • Marsh L.
        Structural brain imaging in schizophrenia.
        Biol Psychiatry. 1999; 46: 627-649
        • Posner M.
        • Peterson S.
        The attention system of the human brain.
        Annu Rev Neurosci. 1990; 13: 25-42
        • Pulver A.
        • Karayiorgou M.
        • Wolyniec P.
        • Lasseter V.
        • Kasch L.
        • Nestadt G.
        • et al.
        Sequential strategy to identify a susceptibility gene for schizophrenia.
        Am J Med Genet. 1994; 54: 36-43
        • Pulver A.
        • Nestadt G.
        • Goldberg R.
        • Shprintzen R.
        • Lamacz M.
        • Wolyniec P.
        • et al.
        Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives.
        J Nerv Ment Dis. 1994; 182: 476-478
        • Reiss A.L.
        BrainImage. Stanford University, Department of Psychiatry, Stanford, CA1999
        • Reiss A.L.
        • Abrams M.T.
        • Singer H.S.
        • Ross J.L.
        • Denckla M.B.
        Brain development, gender and IQ in children.
        Brain. 1996; 119: 1763-1774
        • Reiss A.L.
        • Hennessey J.G.
        • Rubin M.
        • Beach L.
        • Abrams M.T.
        • Warsofsky I.S.
        • et al.
        Reliability and validity of an algorithm for fuzzy tissue segmentation of magnetic resonance images.
        J Comput Assist Tomogr. 1998; 22: 471-479
        • Rumsey J.M.
        • Donohue B.C.
        • Brady D.R.
        • Nace K.
        • Giedd J.N.
        • Andreason P.
        A magnetic resonance imaging study of planum temporale asymmetry in men with developmental dyslexia.
        Arch Neurol. 1997; 54: 1481-1489
        • Scambler P.J.
        • Kelly D.
        • Lindsay E.
        • Williamson R.
        • Goldberg R.
        • Shprintzen R.
        • et al.
        Velo-cardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus.
        Lancet. 1992; 339: 1138-1139
        • Scarabino T.
        • Popolizio T.
        • Bertolino A.
        • Salvolini U.
        Proton magnetic resonance spectroscopy of the brain in pediatric patients.
        Eur J Radiol. 1999; 30: 142-153
        • Shaywitz S.E.
        • Shaywitz B.A.
        • Pugh K.R.
        • Fulbright R.K.
        • Constable R.T.
        • Mencl W.E.
        • et al.
        Functional disruption in the organization of the brain for reading in dyslexia.
        Proc Natl Acad Sci U S A. 1998; 95: 2636-2641
        • Shprintzen R.
        • Goldberg R.
        • Golding-Kushner K.
        • Marion R.
        Late-onset psychosis in the velo-cardio-facial syndrome.
        Am J Med Genet. 1992; 42: 141-142
        • Shprintzen R.
        • Goldberg R.
        • Lewin M.
        • Sidoti E.
        • Berkman M.
        • Argamaso R.
        • et al.
        A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities.
        Cleft Palate. 1978; 15: 56-62
        • Shprintzen R.J.
        • Morrow B.
        • Kucherlalapatr R.
        Vascular anomalies may explain many of the features in velo-cardio-facial syndrome.
        Am J Hum Genet. 1997; 61: A5
      2. Subramaniam B, Hennessey JG, Rubin MA, Beach LS, Reiss AL (1997): Software and methods for quantitative imaging in neuroscience: The Kennedy Krieger Institute Human Brain Project. In: Koslow SH, Huerta MF, editors. Neuroinformatics: An overview of the Human Brain Project. Mahwah, NJ: Erlbaum, pp 335–360.

        • Swillen A.
        • Devriendt K.
        • Legius E.
        • Eyskens B.
        • Dumoulin M.
        • Gewillig M.
        • et al.
        Intelligence and psychosocial adjustment in velocardiofacial syndrome.
        J Med Genet. 1997; 34: 453-458
        • Talairach J.
        • Tournoux P.
        Co-Planar Stereotaxic Atlas of the Human Brain. Thieme, New York1988
        • Usiskin S.I.
        • Nicolson R.
        • Krasnewich D.M.
        • Yan W.
        • Lenane M.
        • Wudarsky M.
        • et al.
        Velocardiofacial syndrome in childhood-onset schizophrenia.
        J Am Acad Child Adolesc Psychiatry. 1999; 38: 1536-1543
        • Vandenberghe R.
        • Price C.
        • Wise R.
        • Josephs O.
        • Frackowiak R.S.
        Functional anatomy of a common semantic system for words and pictures.
        Nature. 1996; 383: 254-256
      3. Wechsler D (1991): Wechsler Intelligence Scale for Children, 3rd ed. San Antonio: Psychological Corp.

        • Yamagishi H.
        • Garg V.
        • Matsuoka R.
        • Thomas T.
        • Srivastava D.
        A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects.
        Science. 1999; 283: 1158-1161