Advertisement
Molecular and cellular hypotheses of antidepressant action| Volume 48, ISSUE 8, P755-765, October 15, 2000

Download started.

Ok

The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death

  • Robert M Sapolsky
    Correspondence
    Address reprint requests to Robert M. Sapolsky, Ph.D., Stanford University, Department of Biological Sciences, Gilbert Laboratories, Stanford CA 94305
    Affiliations
    Department of Biological Sciences and the Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, California, USA
    Search for articles by this author

      Abstract

      A number of studies indicate that prolonged, major depression is associated with a selective loss of hippocampal volume that persists long after the depression has resolved. This review is prompted by two ideas. The first is that overt neuron loss may be a contributing factor to the decrease in hippocampal volume. As such, the first half of this article reviews current knowledge about how hippocampal neurons die during insults, focusing on issues related to the trafficking of glutamate and calcium, glutamate receptor subtypes, oxygen radical generation, programmed cell death, and neuronal defenses. This is meant to orient the reader toward the biology that is likely to underlie any such instances of neuron loss in major depression. The second idea is that glucocorticoids, the adrenal steroids secreted during stress, may play a contributing role to any such neuron loss. The subtypes of depression associated with the hippocampal atrophy typically involve significant hypersecretion of glucocorticoids, and the steroid has a variety of adverse effects in the hippocampus, including causing overt neuron loss. The second half of this article reviews the steps in this cascade of hippocampal neuron death that are regulated by glucocorticoids.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams J.
        • Cory S.
        The bcl-2 protein family.
        Science. 1998; 281: 1322-1326
      1. Ajilore O, Fink S, Sapolsky R (submitted): Effects of glucocorticoids on heat-shock protein induction and protection in rat hippocampus.

        • Bartus R.
        • Baker K.
        • Heiser A.
        • Sawyer S.
        • Dean R.
        • Elliott P.
        • Straub J.
        Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage.
        J Cereb Blood Flow Metab. 1994; 14: 537-544
        • Beal M.
        • Hyman B.
        • Koroshetz W.
        Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?.
        Trends Neurosci. 1993; 16: 125-131
      2. Bhargava A, Meijer O, Dallman M, Pearce D (in press): Plasma membrane calcium pump isoform 1 gene expression is repressed by corticosterone and stress in rat hippocampus. J Neurosci.

        • Bindokas V.
        • Miller R.
        Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons.
        J Neurosci. 1995; 15: 6999-7011
        • Bremner J.
        Does stress damage the brain?.
        Biol Psychiatry. 1999; 45: 797-805
        • Bremner J.
        • Narayan M.
        • Anderson E.
        • Staib L.
        • Miller H.
        • Charney D.
        Hippocampal volume reduction in major depression.
        Am J Psychiatry. 2000; 157: 115-118
        • Bryan R.
        • King J.
        Glucocorticoids modulate the effect of plasma epinephrine on regional glucose utilization.
        Soc Neurosci Abstr. 1988; 399: 11
        • Choi D.
        Calcium-mediated neurotoxicity.
        Trends Neurosci. 1988; 11: 465-469
        • Choi D.
        Calcium.
        Trends Neurosci. 1995; 18: 58-60
        • Chou Y.
        • Lin W.
        • Sapolsky R.
        Glucocorticoids increase extracellular [3H]D-aspartate overflow in hippocampal cultures during cyanide-induced ischemia.
        Brain Res. 1994; 654: 8-14
        • Coyle J.
        • Puttfarcken P.
        Oxidative stress, glutamate, and neurodegenerative disorders.
        Science. 1993; 262: 689-695
        • de Kloet E.
        • Oitzl M.
        • Joels M.
        Stress and cognition.
        Trends Neurosci. 1999; 22: 422-426
        • Doyle P.
        • Rohner-Jeanrenaud F.
        • Jeanrenaud B.
        Local cerebral glucose utilization in brains of lean and genetically obese (fa/fa) rats.
        Am J Physiol. 1993; 264: E29-E36
        • Elliott E.
        • Mattson M.
        • Vanderklish P.
        • Lynch G.
        • Chang I.
        • Sapolsky R.
        Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo.
        J Neurochem. 1993; 61: 57-67
        • Elliott E.
        • Sapolsky R.
        Corticosterone enhances kainic acid-induced calcium mobilization in cultured hippocampal neurons.
        J Neurochem. 1992; 59: 1033-1040
        • Elliott E.
        • Sapolsky R.
        Corticosterone impairs hippocampal neuronal calcium regulation.
        Brain Res. 1993; 602: 84-90
        • Eriksson P.
        • Perfilieva E.
        • Bjork-Eriksson T.
        • Alborn A.
        • Nordborg C.
        • Peterson D.
        • Gage F.
        Neurogenesis in the adult human hippocampus.
        Nat Med. 1998; 4: 1313-1317
        • Fiskum G.
        • Murphy A.
        • Beal M.
        Mitochondria in neurodegeneration.
        J Cereb Blood Flow Metab. 1999; 19: 351-369
        • Freo U.
        • Holloway H.
        • Kalogeras K.
        • Rapoport S.
        • Soncrant T.
        Adrenalectomy or metyrapone-pretreatment abolishes cerebral metabolic responses to the serotonin agonist DOI in the hippocampus.
        Brain Res. 1992; 586: 256-264
        • Goodman Y.
        • Bruce A.
        • Cheng B.
        • Mattson M.
        Estrogens attenuate excitotoxicity, oxidative injury, and amyloid B-peptide toxicity in hippocampal neurons.
        J Neurochem. 1996; 66: 1836-1844
        • Gorter J.
        • Petrozzino J.
        • Aronica E.
        • Rosenbaum D.
        • Opitz T.
        • Bennett M.
        • et al.
        Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil.
        J Neurosci. 1997; 17: 6179-6188
        • Gould E.
        • Reeves A.
        • Graziano M.
        • Gross C.
        Neurogenesis in the neocortex of adult primates.
        Science. 1999; 286: 548-552
        • Green D.
        • Reed J.
        Mitochondria and apoptosis.
        Science. 1998; 281: 1309-1312
      3. Hertz L. Kvamme E. McGreer E. Schousboe E. Glutamine, Glutamate and GABA in the Central Nervous System. Liss, New York1993
        • Heurteaux C.
        • Lauritzen I.
        • Widmann C.
        • Lazdunski M.
        Essential role of adenosine, adenosine Al receptors and KATP channels in cerebral ischemic preconditioning.
        Proc Natl Acad Sci U S A. 1995; 92: 4666-4670
        • Horner H.
        • Packan D.
        • Sapolsky R.
        Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia.
        Neuroendocrinology. 1990; 52: 57-64
        • Joels M.
        • de Kloet E.
        Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus.
        Science. 1989; 245: 1502-1505
        • Joels M.
        • de Kloet E.
        Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro.
        Proc Natl Acad Sci U S A. 1989; 87: 4495-4498
        • Kadekaro M.
        • Masanori I.
        • Gross P.
        Local cerebral glucose utilization is increased in acutely adrenalectomized rats.
        Neuroendocrinology. 1988; 47: 329-334
        • Kerr D.
        • Campbell L.
        • Thibault O.
        • Landfield P.
        Hippocampal glucocorticoid receptor activation enhances voltage-dependent calcium conductances.
        Proc Natl Acad Sci U S A. 1992; 89: 8527-8531
      4. Kindy M, Yu J, Miller R, Roos R, Ghadge G (1996): Adenoviral vectors in ischemic injury. In: Krieglstein J, editor. Pharmacology of Cerebral Ischemia.

        • Kolasa K.
        • Song L.
        • Jope R.
        Adrenalectomy increases phosphoinositide hydrolysis induced by norepinephrine or excitatory amino acids in rat hippocampal slices.
        Brain Res. 1992; 579: 128-134
        • Landfield P.
        • Pitler T.
        Prolonged calcium-dependent afterhyperpolarizations in hippocampal neurons of aged rats.
        Science. 1984; 226: 1089-1092
        • Lawrence M.S.
        • Sapolsky R.
        Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons.
        Brain Res. 1994; 646: 303-306
        • Lee J.
        • Zipfel G.
        • Choi D.
        The changing landscape of ischaemic brain injury mechanisms.
        Nat Suppl. 1999; 399: A7-A14
        • Lee K.
        • Frank S.
        • Vanderklish P.
        • Arai A.
        • Lynch G.
        Inhibition of proteolysis protects hippocampal neurons from ischemia.
        Proc Natl Acad Sci U S A. 1991; 88: 7233-7237
        • Lieberman D.
        • Mody I.
        Regulation of NMDA channel function by endogenous calcium-dependent phosphatase.
        Nature. 1994; 369: 235-239
        • Lipton P.
        Ischemic cell death in brain neurons.
        Physiol Rev. 1999; 79: 1431-1568
        • Lipton S.
        • Choi Y.
        • Pan Z.
        • Lei S.
        • Chen H.
        • Sucher N.
        • et al.
        A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.
        Nature. 1993; 364: 626-632
        • Lipton S.
        • Rosenberg P.
        Excitatory amino acids as a final common pathway for neurologic disorders.
        N Engl J Med. 1994; 330: 613-622
        • Lobner D.
        • Lipton P.
        Intracellular calcium levels and calcium fluxes in the CA1 region of the rat hippocampal slice during in vitro ischemia.
        J Neurosci. 1993; 13: 4861-4871
        • Longuemare M.
        • Swanson R.
        Amino acid release from astrocytes during energy failure by reversal of sodium-dependent uptake.
        J Neurosci Res. 1995; 40: 379-386
        • Lowy M.
        • Wittenberg L.
        • Novotney S.
        Adrenalectomy attenuates kainic acid-induced spectrin proteolysis and heat shock protein 70 induction in hippocampus and cortex.
        J Neurochem. 1994; 63: 886-894
        • Lowy M.
        • Wittenberg L.
        • Yamamoto B.
        Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats.
        J Neurochem. 1995; 65: 268-274
        • Manzoni O.
        • Manabe T.
        • Nicoll R.
        Release of adenosine by activation of NMDA receptors in the hippocampus.
        Science. 1994; 265: 2098-2101
        • McCormack J.
        • Denton R.
        Mitochondrial calcium transport and the role of intramitochondrial calcium in the regulation of energy metabolism.
        Dev Neurosci. 1993; 15: 165-173
        • McEwen B.
        • Sapolsky R.
        Stress and cognitive function.
        Curr Opin Neurobiol. 1995; 5: 205-216
        • McIntosh L.J.
        • Cortopassi K.
        • Sapolsky R.
        Glucocorticoids may alter antioxidant enzyme capacity in the brain.
        Brain Res. 1998; 791: 215-222
        • Meier T.
        • Ho D.
        • Park T.
        • Sapolsky R.
        Gene transfer of calbindin D28K cDNA via herpes simplex virus amplicon vector decreases calcium ion mobilization and enhances neuronal survival following glutamatergic challenge but not following cyanide.
        J Neurochem. 1998; 79: 1013-1023
        • Meier T.
        • Ho D.
        • Sapolsky R.
        Increased expression of calbindin D28K via herpes simplex virus amplicon vector decreases calcium ion mobilization and enhances neuronal survival following hypoglycemic challenge.
        Neurochemistry. 1997; 69: 1039-1047
        • Moghaddam B.
        Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex.
        J Neurochem. 1993; 60: 1650-1657
        • Moghaddam B.
        • Bolinao M.
        • Stein-Behrens B.
        • Sapolsky R.
        Glucocorticoids mediate the stress-induced accumulation of extracellular glutamate.
        Brain Res. 1994; 655: 251-254
        • Munck A.
        Glucocorticoid inhibition of glucose uptake by peripheral tissues.
        Perspect Biol Med. 1971; 14: 265-269
        • Pellegrini-Giampietro D.
        • Gorter J.
        • Bennett M.
        • Zukin R.
        The GluR2 hypothesis.
        Trends Neurosci. 1997; 20: 464-470
        • Pellerin L.
        • Magistretti P.
        Glutamate uptake into astrocytes stimulate aerobic glycolysis.
        Proc Natl Acad Sci U S A. 1994; 91: 10625-10629
        • Phillips R.
        • Meier T.
        • Giuli L.
        • McLaughlin J.
        • Ho D.
        • Sapolsky R.
        Calbindin D28K gene-transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults.
        J Neurochem. 1999; 73: 1200-1205
        • Pitman R.
        • Orr S.
        Twenty-four hour urinary cortisol and catecholamine excretion in combat-related PTSD.
        Biol Psychiatry. 1990; 27: 245-247
        • Reagan L.
        • McEwen B.
        Controversies surrounding glucocorticoid-mediated cell death in the hippocampus.
        J Chem Neuroanat. 1997; 13: 149-167
        • Rossi D.
        • Oshima T.
        • Attwell D.
        Glutamate release in severe brain ischaemia is mainly by reversed uptake.
        Nature. 2000; 403: 316-321
        • Rothman S.
        The neurotoxicity of excitatory amino acids is produced by passive chloride influx.
        J Neurosci. 1985; 5: 1483-1489
        • Rothstein J.
        • Dykes-Hoberg M.
        • Pardo C.
        • Bristol L.
        • Jin L.
        • Kuncl R.
        • et al.
        Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate.
        Neuron. 1996; 16: 675-686
        • Roy M.
        • Sapolsky R.
        Neuronal apoptosis in acute necrotic insults.
        Trends Neurosci. 1999; 22: 419-422
        • Sapolsky R.
        Why stress is bad for your brain.
        Science. 1996; 273: 749-750
        • Sapolsky R.
        Stress, glucocorticoids and their adverse neurological effects.
        Exp Gerontol. 1999; 34: 721-732
      5. Sapolsky R (in press): Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry.

        • Sapolsky R.
        • Steinberg G.
        Gene therapy for acute neurological insults.
        Neurology. 1999; 10: 1922-1931
        • Sattler R.
        • Charlton M.P.
        • Hafner M.
        • Tymianski M.
        Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity.
        J Neurochem. 1998; 71: 2349-2364
        • Seckl J.
        • Kelly P.
        • Sharkey J.
        Glycyrrhetinic acid, an inhibitor of 11beta-hydroxysteroid dehydrogenase, alters local cerebral glucose utilization in vivo.
        J Steriod Biochem Mol Biol. 1991; 39: 777-779
        • Sheline Y.
        • Sanghavi M.
        • Mintun M.
        • Gado M.
        Depression duration but not age predicts hippocampal volume loss in medical healthy women with recurrent major depression.
        J Neurosci. 1999; 19: 5034-5043
        • Sheline Y.
        • Wang P.
        • Gado M.
        • Csernansky J.
        • Vannier M.
        Hippocampal atrophy in recurrent major depression.
        Proc Natl Acad Sci U S A. 1996; 93: 3908-3913
        • Stein-Behrens B.
        • Elliott E.
        • Miller C.
        • Schilling J.
        • Newcombe R.
        • Sapolsky R.
        Glucocorticoids exacerbate kainic acid-induced extracellular accumulation of excitatory amino acids in the rat hippocampus.
        J Neurochem. 1992; 58: 1730-1735
        • Stein-Behrens B.
        • Lin W.
        • Sapolsky R.
        Physiological elevations of glucocorticoids potentiate glutamate accumulation in the hippocampus.
        J Neurochem. 1994; 63: 596-602
        • Stein-Behrens B.
        • Mattson M.
        • Chang I.
        • Yeh M.
        • Sapolsky R.
        Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus.
        J Neurosci. 1994; 14: 5373-5380
        • Tombaugh G.
        • Sapolsky R.
        Evolving concepts about the role of acidosis in ischemic neuropathology.
        J Neurochem. 1993; 6l: 793-803
        • Tombaugh G.C.
        • Sapolsky R.
        Corticosterone accelerates hypoxia-induced ATP loss in cultured hippocampal astrocytes.
        Brain Res. 1992; 588: 154-158
        • Traynelis S.
        • Cull-Candy S.
        Proton inhibition of NMDA receptors in cerebellar neurons.
        Nature. 1990; 345: 347-350
        • Turski L.
        • Turski W.
        Towards an understanding of the role of glutamate in neurodegenerative disorders.
        Experientia. 1993; 49: 1064-1072
        • Vannucci S.
        • Maher F.
        • Simpson I.
        • Lee W.
        Effects of cerebral hypoxia-ischemia on glucose transporter expression in immature rat brain.
        J Cereb Blood Flow Metab. 1995; 15: S287
        • Vass K.
        • Welch W.
        • Nowak T.
        Localization of 70 kDa stress protein induction in gerbil brain after ischemia.
        Acta Neuropathol (Berl). 1988; 77: 128-135
        • Virgin C.
        • Ha T.
        • Packan D.
        • Tombaugh G.
        • Yang S.
        • Horner H.
        • Sapolsky R.
        Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes.
        J Neurochem. 1991; 57: 1422-1428
        • Volterra A.
        • Tritti D.
        • Tromba C.
        • Floridi S.
        • Racagni G.
        Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes.
        J Neurosci. 1994; 14: 2924-2932
        • Whiteford H.
        • Peabody C.
        • Csernansky J.
        • Warner M.
        • Berger P.
        Elevated baseline and postdexamethasone cortisol levels. A reflection of severity or endogeneity?.
        J Affect Disord. 1987; 12: 199-202
        • Yatsugi S.
        • Takahashi M.
        • Kawasaki-Yatsugi S.
        • Koshiya K.
        • Sakamoto S.
        • Uematsu D.
        • Shimizu-Sasamata M.
        Neuroprotective effect of YM90K, a novel AMPA/kainate receptor antagonist, in focal cerebral ischemia in cats.
        J Cereb Blood Flow Metab. 1996; 16: 959-966
        • Yehuda R.
        • Southwick S.
        • Nussbaum E.
        • Giller E.
        • Mason J.
        Low urinary cortisol in PTSD.
        J Nerv Ment Dis. 1991; 178: 366-369
        • Yenari M.
        • Fink S.
        • Sun G.
        • Chang L.
        • Patel M.
        • Kunis D.
        • et al.
        Gene therapy with hsp72 is neuroprotective in rat models of stroke and epilepsy.
        Ann Neurol. 1998; 44: 584-591
        • Young D.
        • Dragunow M.
        Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms.
        Neuroscience. 1994; 58: 245-261