Abstract
Identifying genetic loci at which mutations predispose individuals to common psychiatric
illnesses will have major impact on the diagnosis and treatment of mental illness.
The available evidence indicates that mutations at the Wolfram syndrome locus contribute
substantially to the prevalence of psychiatric illness in the general population.
Patients with mutations at this locus on both parental chromosomes, called Wolfram
syndrome homozygotes, have a distinctive and rare autosomal recessive syndrome characterized
by juvenile onset diabetes mellitus and bilateral progressive optic atrophy. Diverse
and serious psychiatric manifestations frequently have been observed in Wolfram syndrome
patients; however, the population burden of mental illness attributable to mutations
at this locus is almost entirely from individuals who carry a single mutation, called
Wolfram syndrome heterozygotes, who have no distinguishing physical characteristics
but constitute approximately 1% of the population.
Molecular genotyping of blood relatives of Wolfram syndrome patients has shown that
Wolfram syndrome heterozygotes are 26-fold more likely than noncarriers to have a
psychiatric hospitalization. Severe depression was the predominant finding in the
test group studied. The prediction that approximately 25% of all patients hospitalized
for depression are Wolfram syndrome heterozygotes now can be tested by mutation screening
of hospitalized patients from the general population. Many other behavioral and cognitive
difficulties also have been observed in Wolfram syndrome families. For each specific
psychiatric abnormality, a “test group” of blood relatives within Wolfram syndrome
families with that abnormality can be formed. By comparing the number of Wolfram syndrome
heterozygotes found in each test group by molecular genotyping with the number expected
under the null hypothesis, the index-test method can determine which clinical phenotypes
result from mutations at the Wolfram syndrome locus. This method can be utilized to
identify other loci at which mutations predispose individuals to psychiatric illnesses.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Biological PsychiatryAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Neurodegeneration and diabetes.Lancet. 1995; 346: 1458-1463
- Wolfram syndrome. A report of four cases and review of the literature.Ophthalmic Genet. 1994; 15: 77-85
- Coexistence of diabetes mellitus and insipidus and optic atrophy in two male siblings.Am J Med. 1970; 48: 398-403
- Progressive optic atrophy associated with juvenile diabetes mellitis.Singapore Med J. 1993; 34: 343-345
- Bipolar affective disorders linked to DNA markers on chromosome 11.Nature. 1987; 325: 783-787
- A rare coding variant within the wolframin gene in bipolar and unipolar affective disorder cases.Neurosci Lett. 1999; 277: 123-126
- Wolfram syndrome.Acta Neuropathol (Berl). 1997; 93: 426-429
- Co-existent diabetes mellitus and diabetes insipidus, a familial disease.J Clin Endocrinol Metab. 1975; 41: 1020-1024
- Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis.Arch Neurol. 1992; 49: 401-406
- A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome).Nat Genet. 1998; 20: 143-148
- DIDMOAD syndrome (diabetes insipidus, diabetes mellitis, optic atrophy, deafness, mit zerebello-pontiner atrophie.Schweiz Med Wochenschr. 1982; 112: 348-352
- DIDMOAD (Wolfram) syndrome (letter).Schweiz Med Wochenschr. 1994; 164: 132
- Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish.Nature. 1989; 342: 238-243
- The Wolfram syndrome.Ir Med J. 1992; 85: 34-36
- Morbidity and mortality in the Wolfram syndrome.Diabetes Care. 1995; 18: 1566-1570
- Neutral sequence variants and haplotypes at the 150 kb ataxia-telangiectasia locus.Am J Med Genet. 1999; 86: 140-144
- Organic mood syndrome in two siblings with Wolfram syndrome (letter).Br J Psychiatry. 1992; 161: 282
- Various clinical aspects of DIDMOAD (Wolfram) Syndrome.Turk J Pediatr. 1995; 37: 235-240
- Linkage of the Wolfram syndrome disease gene with markers on the short arm of chromosome 4.Nat Genet. 1994; 8: 95-97
- Wolfram syndrome.Neurology. 1992; 42: 1220-1224
- The association of juvenile diabetes mellitus and optic atrophy.QJM. 1966; 35: 385-405
- Evidence of widespread axonal pathology in Wolfram syndrome.Acta Neuropathol (Berl). 1999; 98: 304-308
- Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted tramsmembrane protein.Hum Mol Genet. 1998; 7: 2021-2028
- Effective testing of gene-disease associations.Am J Hum Genet. 1990; 47: 266-274
Swift MR, Kupper LL, Chase CL (1995): Process for testing gene-disease associations. U.S. Patent 5,464,742, issued November 7, 1995.
- Breast and other cancers in families with ataxia-telangiectasia.N Engl J Med. 1987; 316: 1289-1294
- Psychiatric disorders in 36 Wolfram syndrome families.Am J Psychiatry. 1991; 148: 775-779
- Predisposition of Wolfram syndrome heterozygotes to psychiatric illness.Mol Psychiatry. 1998; 3: 86-91
- Psychiatric findings in Wolfram syndrome homozygotes.Lancet. 1990; 336: 667-669
- Primary optic atrophy in diabetes mellitus.Diabetes. 1956; 5: 295-296
- A case of infantilism with goitre, diabetes mellitis, mental defect and bilateral primary optic atrophy.Med J Aust. 1943; 2: 398-401
- Diabetes mellitus and simple optic atrophy among siblings.Staff Proc Mayo Clin. 1938; 13: 715-718
Article info
Publication history
Accepted:
January 6,
2000
Received in revised form:
December 23,
1999
Received:
September 27,
1999
Identification
Copyright
© 2000 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.