Advertisement
Reviews| Volume 47, ISSUE 9, P787-793, May 01, 2000

Psychiatric disorders and mutations at the Wolfram syndrome locus

  • Michael Swift
    Correspondence
    Address reprint requests to Michael Swift, M.D., New York Medical College, The Institute for the Genetic Analysis of Common Diseases, 4 Skyline Dr, Hawthorne NY 10532
    Affiliations
    Departments of Medicine and Psychiatry, New York Medical College, Hawthorne, New York, USA
    Search for articles by this author
  • Ronnie Gorman Swift
    Affiliations
    Departments of Medicine and Psychiatry, New York Medical College, Hawthorne, New York, USA

    Department of The Institute for the Genetic Analysis of Common Diseases, New York Medical College, Hawthorne, New York, USA
    Search for articles by this author

      Abstract

      Identifying genetic loci at which mutations predispose individuals to common psychiatric illnesses will have major impact on the diagnosis and treatment of mental illness. The available evidence indicates that mutations at the Wolfram syndrome locus contribute substantially to the prevalence of psychiatric illness in the general population.
      Patients with mutations at this locus on both parental chromosomes, called Wolfram syndrome homozygotes, have a distinctive and rare autosomal recessive syndrome characterized by juvenile onset diabetes mellitus and bilateral progressive optic atrophy. Diverse and serious psychiatric manifestations frequently have been observed in Wolfram syndrome patients; however, the population burden of mental illness attributable to mutations at this locus is almost entirely from individuals who carry a single mutation, called Wolfram syndrome heterozygotes, who have no distinguishing physical characteristics but constitute approximately 1% of the population.
      Molecular genotyping of blood relatives of Wolfram syndrome patients has shown that Wolfram syndrome heterozygotes are 26-fold more likely than noncarriers to have a psychiatric hospitalization. Severe depression was the predominant finding in the test group studied. The prediction that approximately 25% of all patients hospitalized for depression are Wolfram syndrome heterozygotes now can be tested by mutation screening of hospitalized patients from the general population. Many other behavioral and cognitive difficulties also have been observed in Wolfram syndrome families. For each specific psychiatric abnormality, a “test group” of blood relatives within Wolfram syndrome families with that abnormality can be formed. By comparing the number of Wolfram syndrome heterozygotes found in each test group by molecular genotyping with the number expected under the null hypothesis, the index-test method can determine which clinical phenotypes result from mutations at the Wolfram syndrome locus. This method can be utilized to identify other loci at which mutations predispose individuals to psychiatric illnesses.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barrett T.G.
        • Bundey S.E.
        • Macleod A.F.
        Neurodegeneration and diabetes.
        Lancet. 1995; 346: 1458-1463
        • Bitoun P.
        Wolfram syndrome. A report of four cases and review of the literature.
        Ophthalmic Genet. 1994; 15: 77-85
        • Bretz G.W.
        • Baghdassarian A.
        • Graber J.D.
        • Zacherle B.J.
        • Norum R.A.
        • Blizzard R.M.
        Coexistence of diabetes mellitus and insipidus and optic atrophy in two male siblings.
        Am J Med. 1970; 48: 398-403
        • Chuah G.
        • Seah S.
        • Chee S.P.
        Progressive optic atrophy associated with juvenile diabetes mellitis.
        Singapore Med J. 1993; 34: 343-345
        • Egeland J.A.
        • Gerhard D.S.
        • Pauls D.L.
        • Susex J.N.
        • Kidd K.K.
        • Allen C.R.
        • et al.
        Bipolar affective disorders linked to DNA markers on chromosome 11.
        Nature. 1987; 325: 783-787
        • Furlong R.A.
        • Ho L.W.
        • Rubinsztein J.S.
        • Michael A.
        • Walsh C.
        • Paykel E.S.
        • Rubinsztein D.C.
        A rare coding variant within the wolframin gene in bipolar and unipolar affective disorder cases.
        Neurosci Lett. 1999; 277: 123-126
        • Genı́s D.
        • Dávalos A.
        • Molins A.
        • Ferrer I.
        Wolfram syndrome.
        Acta Neuropathol (Berl). 1997; 93: 426-429
        • Gossain V.V.
        • Sugawara M.
        • Hagen G.A.
        Co-existent diabetes mellitus and diabetes insipidus, a familial disease.
        J Clin Endocrinol Metab. 1975; 41: 1020-1024
        • Hyde T.M.
        • Ziegler J.C.
        • Weinberger D.R.
        Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis.
        Arch Neurol. 1992; 49: 401-406
        • Inoue H.
        • Tanizawa Y.
        • Wasson J.
        • Behn P.
        • Kalidas K.
        • Bernal-Mizrachi E.
        • et al.
        A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome).
        Nat Genet. 1998; 20: 143-148
        • Kehl O.
        • Keller U.
        DIDMOAD syndrome (diabetes insipidus, diabetes mellitis, optic atrophy, deafness, mit zerebello-pontiner atrophie.
        Schweiz Med Wochenschr. 1982; 112: 348-352
        • Kellner M.
        • Strian F.
        • Fassbender K.
        • Kennerknecht I.
        • Klein R.
        DIDMOAD (Wolfram) syndrome (letter).
        Schweiz Med Wochenschr. 1994; 164: 132
        • Kelsoe J.R.
        • Ginns E.I.
        • Egeland J.A.
        • Gerhard D.S.
        • Goldstein A.M.
        • Bale S.J.
        • et al.
        Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish.
        Nature. 1989; 342: 238-243
        • Kinsley B.T.
        • Firth R.G.F.
        The Wolfram syndrome.
        Ir Med J. 1992; 85: 34-36
        • Kinsley B.T.
        • Swift M.
        • Dumont R.H.
        • Swift R.G.
        Morbidity and mortality in the Wolfram syndrome.
        Diabetes Care. 1995; 18: 1566-1570
        • Li A.
        • Huang Y.
        • Swift M.
        Neutral sequence variants and haplotypes at the 150 kb ataxia-telangiectasia locus.
        Am J Med Genet. 1999; 86: 140-144
        • Nanko S.
        • Yokoyama H.
        • Hoshino Y.
        • Kumashiro H.
        • Mikuni M.
        Organic mood syndrome in two siblings with Wolfram syndrome (letter).
        Br J Psychiatry. 1992; 161: 282
        • Okten A.
        • Gedik Y.
        • Demirci A.
        • Mocan H.
        • Erduran E.
        • Aslan Y.
        Various clinical aspects of DIDMOAD (Wolfram) Syndrome.
        Turk J Pediatr. 1995; 37: 235-240
        • Polymeropoulos M.H.
        • Swift R.G.
        • Swift M.
        Linkage of the Wolfram syndrome disease gene with markers on the short arm of chromosome 4.
        Nat Genet. 1994; 8: 95-97
        • Rando T.A.
        • Horton J.C.
        • Layzer R.B.
        Wolfram syndrome.
        Neurology. 1992; 42: 1220-1224
        • Rose F.C.
        • Fraser G.R.
        • Friedmann A.I.
        • Kohner E.M.
        The association of juvenile diabetes mellitus and optic atrophy.
        QJM. 1966; 35: 385-405
        • Shannon P.
        • Becker L.
        • Deck J.
        Evidence of widespread axonal pathology in Wolfram syndrome.
        Acta Neuropathol (Berl). 1999; 98: 304-308
        • Strom T.M.
        • Hortnagel K.
        • Gekeler F.
        • Scharfe C.
        • Rabl W.
        • Gerbitz K.D.
        • et al.
        Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted tramsmembrane protein.
        Hum Mol Genet. 1998; 7: 2021-2028
        • Swift M.
        • Kupper L.L.
        • Chase C.L.
        Effective testing of gene-disease associations.
        Am J Hum Genet. 1990; 47: 266-274
      1. Swift MR, Kupper LL, Chase CL (1995): Process for testing gene-disease associations. U.S. Patent 5,464,742, issued November 7, 1995.

        • Swift M.
        • Reitnauer P.J.
        • Morrell D.
        • Chase C.L.
        Breast and other cancers in families with ataxia-telangiectasia.
        N Engl J Med. 1987; 316: 1289-1294
        • Swift R.G.
        • Perkins D.O.
        • Chase C.L.
        • Sadler D.B.
        • Swift M.
        Psychiatric disorders in 36 Wolfram syndrome families.
        Am J Psychiatry. 1991; 148: 775-779
        • Swift R.G.
        • Polymeropoulos M.
        • Torres R.
        • Swift M.
        Predisposition of Wolfram syndrome heterozygotes to psychiatric illness.
        Mol Psychiatry. 1998; 3: 86-91
        • Swift R.G.
        • Sadler D.B.
        • Swift M.
        Psychiatric findings in Wolfram syndrome homozygotes.
        Lancet. 1990; 336: 667-669
        • Tunbridge R.E.
        • Paley R.G.
        Primary optic atrophy in diabetes mellitus.
        Diabetes. 1956; 5: 295-296
        • Tyrer J.
        A case of infantilism with goitre, diabetes mellitis, mental defect and bilateral primary optic atrophy.
        Med J Aust. 1943; 2: 398-401
        • Wolfram D.J.
        Diabetes mellitus and simple optic atrophy among siblings.
        Staff Proc Mayo Clin. 1938; 13: 715-718