Advertisement

Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

      Abstract

      Background

      Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk.

      Methods

      We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH.

      Results

      Across disorders, genome-wide significant single nucleotide polymorphism–by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10−8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10−6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10−7; rs73033497, p = 8.8 × 10−7; rs7914279, p = 6.4 × 10−7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05).

      Conclusions

      In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Salk R.H.
        • Hyde J.S.
        • Abramson L.Y.
        Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms.
        Psychol Bull. 2017; 143: 783-822
        • Jongsma H.E.
        • Turner C.
        • Kirkbride J.B.
        • Jones P.B.
        International incidence of psychotic disorders, 2002–17: A systematic review and meta-analysis.
        Lancet Public Health. 2019; 4: e229-e244
        • Diflorio A.
        • Jones I.
        Is sex important? Gender differences in bipolar disorder.
        Int Rev Psychiatry. 2010; 22: 437-452
        • Erol A.
        • Winham S.J.
        • McElroy S.L.
        • Frye M.A.
        • Prieto M.L.
        • Cuellar-Barboza A.B.
        • et al.
        Sex differences in the risk of rapid cycling and other indicators of adverse illness course in patients with bipolar I and II disorder.
        Bipolar Disord. 2015; 17: 670-676
        • Falkenburg J.
        • Tracy D.K.
        Sex and schizophrenia: A review of gender differences.
        Psychosis. 2014; 6: 61-69
        • Leung A.
        • Chue P.
        Sex differences in schizophrenia, a review of the literature.
        Acta Psychiatr Scand Suppl. 2000; 401: 3-38
        • Schuch J.J.
        • Roest A.M.
        • Nolen W.A.
        • Penninx B.W.
        • de Jonge P.
        Gender differences in major depressive disorder: Results from the Netherlands study of depression and anxiety.
        J Affect Disord. 2014; 156: 156-163
        • Mareckova K.
        • Holsen L.
        • Admon R.
        • Whitfield-Gabrieli S.
        • Seidman L.J.
        • Buka S.L.
        • et al.
        Neural - Hormonal responses to negative affective stimuli: Impact of dysphoric mood and sex.
        J Affect Disord. 2017; 222: 88-97
        • Mareckova K.
        • Holsen L.M.
        • Admon R.
        • Makris N.
        • Seidman L.
        • Buka S.
        • et al.
        Brain activity and connectivity in response to negative affective stimuli: Impact of dysphoric mood and sex across diagnoses.
        Hum Brain Mapp. 2016; 37: 3733-3744
        • Polderman T.J.
        • Benyamin B.
        • de Leeuw C.A.
        • Sullivan P.F.
        • van Bochoven A.
        • Visscher P.M.
        • Posthuma D.
        Meta-analysis of the heritability of human traits based on fifty years of twin studies.
        Nat Genet. 2015; 47: 702-709
        • Vink J.M.
        • Bartels M.
        • van Beijsterveldt T.C.
        • van Dongen J.
        • van Beek J.H.
        • Distel M.A.
        • et al.
        Sex differences in genetic architecture of complex phenotypes?.
        PLoS One. 2012; 7e47371
        • Stringer S.
        • Polderman T.J.C.
        • Posthuma D.
        Majority of human traits do not show evidence for sex-specific genetic and environmental effects.
        Sci Rep. 2017; 7: 8688
        • Weiss L.A.
        • Pan L.
        • Abney M.
        • Ober C.
        The sex-specific genetic architecture of quantitative traits in humans.
        Nat Genet. 2006; 38: 218-222
        • Yang J.
        • Bakshi A.
        • Zhu Z.
        • Hemani G.
        • Vinkhuyzen A.A.
        • Nolte I.M.
        • et al.
        Genome-wide genetic homogeneity between sexes and populations for human height and body mass index.
        Hum Mol Genet. 2015; 24: 7445-7449
        • Goldstein J.M.
        • Faraone S.V.
        • Chen W.J.
        • Tsuang M.T.
        Genetic heterogeneity may in part explain sex differences in the familial risk for schizophrenia.
        Biol Psychiatry. 1995; 38: 808-813
        • Goldstein J.M.
        • Cherkerzian S.
        • Tsuang M.T.
        • Petryshen T.L.
        Sex differences in the genetic risk for schizophrenia: History of the evidence for sex-specific and sex-dependent effects.
        Am J Med Genet B Neuropsychiatr Genet. 2013; 162B: 698-710
        • Goldstein J.M.
        Sex differences in schizophrenia: Epidemiology, genetics and the brain.
        Int Rev Psychiatr. 1997; 9: 399-408
        • Goldstein J.M.
        • Seidman L.J.
        • O’Brien L.M.
        • Horton N.J.
        • Kennedy D.N.
        • Makris N.
        • et al.
        Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging.
        Arch Gen Psychiatry. 2002; 59: 154-164
        • Sekar A.
        • Bialas A.R.
        • de Rivera H.
        • Davis A.
        • Hammond T.R.
        • Kamitaki N.
        • et al.
        Schizophrenia risk from complex variation of complement component 4.
        Nature. 2016; 530: 177-183
        • Kamitaki N.
        • Sekar A.
        • Handsaker R.E.
        • de Rivera H.
        • Tooley K.
        • Morris D.L.
        • et al.
        Complement genes contribute sex-biased vulnerability in diverse disorders.
        Nature. 2020; 582: 577-581
        • van Loo H.M.
        • Aggen S.H.
        • Gardner C.O.
        • Kendler K.S.
        Sex similarities and differences in risk factors for recurrence of major depression.
        Psychol Med. 2018; 48: 1685-1693
        • Bertschy G.
        • Velten M.
        • Weibel S.
        Major depression: Does gender influence the risk of recurrence? A systematic review.
        Eur J Psychiatr. 2016; 30: 7-27
        • Smith D.J.
        • Nicholl B.I.
        • Cullen B.
        • Martin D.
        • Ul-Haq Z.
        • Evans J.
        • et al.
        Prevalence and characteristics of probable major depression and bipolar disorder within UK Biobank: Cross-sectional study of 172,751 participants.
        PLoS One. 2013; 8e75362
        • Duncan L.E.
        • Ratanatharathorn A.
        • Aiello A.E.
        • Almli L.M.
        • Amstadter A.B.
        • Ashley-Koch A.E.
        • et al.
        Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability.
        Mol Psychiatry. 2018; 23: 666-673
        • Nievergelt C.M.
        • Maihofer A.X.
        • Klengel T.
        • Atkinson E.G.
        • Chen C.Y.
        • Choi K.W.
        • et al.
        International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.
        Nat Commun. 2019; 10: 4558
        • Mitra I.
        • Tsang K.
        • Ladd-Acosta C.
        • Croen L.A.
        • Aldinger K.A.
        • Hendren R.L.
        • et al.
        Pleiotropic mechanisms indicated for sex differences in autism.
        PLoS Genet. 2016; 12e1006425
        • Khramtsova E.A.
        • Heldman R.
        • Derks E.M.
        • Yu D.
        • Davis L.K.
        • et al.
        • Tourette Syndrome/Obsessive-Compulsive Disorder Working Group of the Psychiatric Genomics Consortium
        Sex differences in the genetic architecture of obsessive-compulsive disorder.
        Am J Med Genet B Neuropsychiatr Genet. 2019; 180: 351-364
        • Hyde C.L.
        • Nagle M.W.
        • Tian C.
        • Chen X.
        • Paciga S.A.
        • Wendland J.R.
        • et al.
        Identification of 15 genetic loci associated with risk of major depression in individuals of European descent.
        Nat Genet. 2016; 48: 1031-1036
        • Walters R.
        • Abbott L.
        • Bryant S.
        • Churchhouse C.
        • Palmer D.
        • Neale B.
        Heritability of >2,000 traits and disorders in the UK Biobank.
        (Available at:) (Accessed May 7, 2019)
        • Hübel C.
        • Gaspar H.A.
        • Coleman J.R.I.
        • Finucane H.
        • Purves K.L.
        • Hanscombe K.B.
        • et al.
        Genomics of body fat percentage may contribute to sex bias in anorexia nervosa.
        Am J Med Genet B Neuropsychiatr Genet. 2019; 180: 428-438
        • Trzaskowski M.
        • Mehta D.
        • Peyrot W.J.
        • Hawkes D.
        • Davies D.
        • Howard D.M.
        • et al.
        Quantifying between-cohort and between-sex genetic heterogeneity in major depressive disorder.
        Am J Med Genet B Neuropsychiatr Genet. 2019; 180: 439-447
        • Martin J.
        • Walters R.K.
        • Demontis D.
        • Mattheisen M.
        • Lee S.H.
        • Robinson E.
        • et al.
        A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2018; 83: 1044-1053
        • Lopes-Ramos C.M.
        • Chen C.Y.
        • Kuijjer M.L.
        • Paulson J.N.
        • Sonawane A.R.
        • Fagny M.
        • et al.
        Sex differences in gene expression and regulatory networks across 29 human tissues.
        Cell Rep. 2020; 31: 107795
        • Rich-Edwards J.W.
        • Kaiser U.B.
        • Chen G.L.
        • Manson J.E.
        • Goldstein J.M.
        Sex and gender differences research design for basic, clinical, and population studies: Essentials for investigators.
        Endocr Rev. 2018; 39: 424-439
        • Ripke S.
        • Wray N.R.
        • Lewis C.M.
        • Hamilton S.P.
        • Weissman M.M.
        • et al.
        • Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium
        A mega-analysis of genome-wide association studies for major depressive disorder.
        Mol Psychiatry. 2013; 18: 497-511
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Psychiatric GWAS Consortium Bipolar Disorder Working Group
        Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4.
        Nat Genet. 2011; 43: 977-983
        • Pedersen C.B.
        • Bybjerg-Grauholm J.
        • Pedersen M.G.
        • Grove J.
        • Agerbo E.
        • Bækvad-Hansen M.
        • et al.
        The iPSYCH2012 case-cohort sample: New directions for unravelling genetic and environmental architectures of severe mental disorders.
        Mol Psychiatry. 2018; 23: 6-14
        • Lam M.
        • Awasthi S.
        • Watson H.J.
        • Goldstein J.
        • Panagiotaropoulou G.
        • Trubetskoy V.
        • et al.
        RICOPILI: Rapid Imputation for COnsortias PIpeLIne.
        Bioinformatics. 2020; 36: 930-933
        • Chang C.C.
        • Chow C.C.
        • Tellier L.C.
        • Vattikuti S.
        • Purcell S.M.
        • Lee J.J.
        Second-generation PLINK: Rising to the challenge of larger and richer datasets.
        GigaScience. 2015; 4: 7
        • Willer C.J.
        • Li Y.
        • Abecasis G.R.
        METAL: Fast and efficient meta-analysis of genomewide association scans.
        Bioinformatics. 2010; 26: 2190-2191
        • Bulik-Sullivan B.K.
        • Loh P.R.
        • Finucane H.K.
        • Ripke S.
        • Yang J.
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        • et al.
        LD Score regression distinguishes confounding from polygenicity in genome-wide association studies.
        Nat Genet. 2015; 47: 291-295
        • Zheng J.
        • Erzurumluoglu A.M.
        • Elsworth B.L.
        • Kemp J.P.
        • Howe L.
        • Haycock P.C.
        • et al.
        LD Hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis.
        Bioinformatics. 2017; 33: 272-279
        • Keller M.C.
        Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution.
        Biol Psychiatry. 2014; 75: 18-24
        • Bhattacharjee S.
        • Rajaraman P.
        • Jacobs K.B.
        • Wheeler W.A.
        • Melin B.S.
        • Hartge P.
        • et al.
        A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits.
        Am J Hum Genet. 2012; 90: 821-835
        • Benner C.
        • Spencer C.C.
        • Havulinna A.S.
        • Salomaa V.
        • Ripatti S.
        • Pirinen M.
        FINEMAP: Efficient variable selection using summary data from genome-wide association studies.
        Bioinformatics. 2016; 32: 1493-1501
        • Hormozdiari F.
        • Kostem E.
        • Kang E.Y.
        • Pasaniuc B.
        • Eskin E.
        Identifying causal variants at loci with multiple signals of association.
        Genetics. 2014; 198: 497-508
        • de Leeuw C.A.
        • Mooij J.M.
        • Heskes T.
        • Posthuma D.
        MAGMA: Generalized gene-set analysis of GWAS data.
        PLoS Comp Biol. 2015; 11e1004219
        • Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium
        Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways.
        Nat Neurosci. 2015; 18: 199-209
        • Pardiñas A.F.
        • Holmans P.
        • Pocklington A.J.
        • Escott-Price V.
        • Ripke S.
        • Carrera N.
        • et al.
        Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection.
        Nat Genet. 2018; 50: 381-389
        • Gorokhova S.
        • Bibert S.
        • Geering K.
        • Heintz N.
        A novel family of transmembrane proteins interacting with beta subunits of the Na,K-ATPase.
        Hum Mol Genet. 2007; 16: 2394-2410
        • Davies G.
        • Lam M.
        • Harris S.E.
        • Trampush J.W.
        • Luciano M.
        • Hill W.D.
        • et al.
        Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function.
        Nat Commun. 2018; 9: 2098
        • Aberg K.A.
        • Liu Y.
        • Bukszár J.
        • McClay J.L.
        • Khachane A.N.
        • Andreassen O.A.
        • et al.
        A comprehensive family-based replication study of schizophrenia genes.
        JAMA Psychiatry. 2013; 70: 573-581
        • Edwards A.C.
        • Bigdeli T.B.
        • Docherty A.R.
        • Bacanu S.
        • Lee D.
        • de Candia T.R.
        • et al.
        Meta-analysis of positive and negative symptoms reveals schizophrenia modifier genes.
        Schizophr Bull. 2016; 42: 279-287
        • Peltola M.A.
        • Kuja-Panula J.
        • Lauri S.E.
        • Taira T.
        • Rauvala H.
        AMIGO is an auxiliary subunit of the Kv2.1 potassium channel.
        EMBO Rep. 2011; 12: 1293-1299
        • Bishop H.I.
        • Cobb M.M.
        • Kirmiz M.
        • Parajuli L.K.
        • Mandikian D.
        • Philp A.M.
        • et al.
        Kv2 ion channels determine the expression and localization of the associated AMIGO-1 cell adhesion molecule in adult brain neurons.
        Front Mol Neurosci. 2018; 11: 1