Advertisement

Prefrontal Cortex Corticotropin-Releasing Factor Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction

      Abstract

      Background

      The medial prefrontal cortex (mPFC) subserves complex cognition and is impaired by stress. Corticotropin-releasing factor (CRF), through CRF receptor 1 (CRFR1), constitutes a key element of the stress response. However, its contribution to the effects of stress in the mPFC remains unclear.

      Methods

      Mice were exposed to acute social defeat stress and subsequently to either the temporal order memory (n = 11–12) or reversal learning (n = 9–11) behavioral test. Changes in mPFC Crhr1 messenger RNA levels were measured in acutely stressed mice (n = 12). Crhr1loxP/loxP mice received either intra-mPFC adeno-associated virus-Cre or empty microinjections (n = 17–20) and then were submitted to acute stress and later to the behavioral tests. Co-immunoprecipitation was used to detect activation of the protein kinase A (PKA) signaling pathway in the mPFC of acutely stressed mice (n = 8) or intra-mPFC CRF injected mice (n = 7). Finally, mice received intra-mPFC CRF (n = 11) and/or Rp-isomer cyclic adenosine 3′,5′ monophosphorothioate (Rp-cAMPS) (n = 12) microinjections and underwent behavioral testing.

      Results

      We report acute stress-induced effects on mPFC-mediated cognition, identify CRF–CRFR1-containing microcircuits within the mPFC, and demonstrate stress-induced changes in Crhr1 messenger RNA expression. Importantly, intra-mPFC CRFR1 deletion abolishes acute stress-induced executive dysfunction, whereas intra-mPFC CRF mimics acute stress-induced mPFC dysfunction. Acute stress and intra-mPFC CRF activate the PKA signaling pathway in the mPFC, leading to cyclic AMP response element binding protein phosphorylation in intra-mPFC CRFR1-expressing neurons. Finally, PKA blockade reverses the intra-mPFC CRF-induced executive dysfunction.

      Conclusions

      Taken together, these results unravel a molecular mechanism linking acute stress to executive dysfunction via CRFR1. This will aid in the development of novel therapeutic targets for stress-induced cognitive dysfunction.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kolb B.
        • Mychasiuk R.
        • Muhammad A.
        • Li Y.
        • Frost D.O.
        • Gibb R.
        Experience and the developing prefrontal cortex.
        Proc Natl Acad Sci U S A. 2012; 109: 17186-17193
        • Puig M.V.
        • Antzoulatos E.G.
        • Miller E.K.
        Prefrontal dopamine in associative learning and memory.
        Neuroscience. 2014; 282C: 217-229
        • Volle E.
        • Levy R.
        [Role of the prefrontal cortex in human behavioral adaptation].
        Med Sci (Paris). 2014; 2: 179-185
        • Butts K.A.
        • Weinberg J.
        • Young A.H.
        • Phillips A.G.
        Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function.
        Proc Natl Acad Sci U S A. 2011; 45: 18459-18464
        • Popoli M.
        • Yan Z.
        • McEwen B.S.
        • Sanacora G.
        The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission.
        Nat Rev Neurosci. 2012; 1: 22-37
        • Snyder K.P.
        • Barry M.
        • Valentino R.J.
        Cognitive impact of social stress and coping strategy throughout development.
        Psychopharmacology (Berl). 2015; 1: 185-195
        • Maeng L.Y.
        • Shors T.J.
        The stressed female brain: neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress.
        Front Neural Circuits. 2013; 7: 198
        • Bonfiglio J.J.
        • Inda C.
        • Refojo D.
        • Holsboer F.
        • Arzt E.
        • Silberstein S.
        The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved.
        Neuroendocrinology. 2011; 1: 12-20
        • Steckler T.
        • Holsboer F.
        Corticotropin-releasing hormone receptor subtypes and emotion.
        Biol Psychiatry. 1999; 11: 1480-1508
        • Refojo D.
        • Schweizer M.
        • Kuehne C.
        • Ehrenberg S.
        • Thoeringer C.
        • Vogl A.M.
        • et al.
        Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1.
        Science. 2011; 6051: 1903-1907
        • Wang X.D.
        • Su Y.A.
        • Wagner K.V.
        • Avrabos C.
        • Scharf S.H.
        • Hartmann J.
        • et al.
        Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss.
        Nat Neurosci. 2013; 6: 706-713
        • Holsboer F.
        Corticotropin-releasing hormone modulators and depression.
        Curr Opin Investig Drugs. 2003; 1: 46-50
        • You X.
        • Gao L.
        • Liu J.
        • Xu C.
        • Liu C.
        • Li Y.
        • et al.
        CRH activation of different signaling pathways results in differential calcium signaling in human pregnant myometrium before and during labor.
        J Clin Endocrinol Metab. 2012; 10: E1851-E1861
        • Sheng H.
        • Xu Y.
        • Chen Y.
        • Zhang Y.
        • Ni X.
        Corticotropin-releasing hormone stimulates mitotic kinesin-like protein 1 expression via a PLC/PKC-dependent signaling pathway in hippocampal neurons.
        Mol Cell Endocrinol. 2012; 1–2: 157-164
        • Taniguchi H.
        • He M.
        • Wu P.
        • Kim S.
        • Paik R.
        • Sugino K.
        • et al.
        A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex.
        Neuron. 2011; 6: 995-1013
        • Justice N.J.
        • Yuan Z.F.
        • Sawchenko P.E.
        • Vale W.
        Type 1 corticotropin-releasing factor receptor expression reported in BAC transgenic mice: implications for reconciling ligand-receptor mismatch in the central corticotropin-releasing factor system.
        J Comp Neurol. 2008; 4: 479-496
        • Wagner K.V.
        • Hartmann J
        • Mangold K
        • Wang XD
        • Labermaier C
        • Liebl C
        • et al.
        Homer1 mediates acute stress-induced cognitive deficits in the dorsal hippocampus.
        J Neurosci. 2013; 9: 3857-3864
        • Barker G.R.
        • Bird F.
        • Alexander V.
        • Warburton E.C.
        Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex.
        J Neurosci. 2007; 11: 2948-2957
        • Knapman A.
        • Heinzmann J.M.
        • Holsboer F.
        • Landgraf R.
        • Touma C.
        Modeling psychotic and cognitive symptoms of affective disorders: disrupted latent inhibition and reversal learning deficits in highly stress reactive mice.
        Neurobiol Learn Mem. 2010; 2: 145-152
        • Clark L.
        • Cools R.
        • Robbins T.W.
        The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning.
        Brain Cogn. 2004; 1: 41-53
        • Greetfeld M.
        • Schmidt M.V.
        • Ganea K.
        • Sterlemann V.
        • Liebl C.
        • Muller M.B.
        A single episode of restraint stress regulates central corticotrophin- releasing hormone receptor expression and binding in specific areas of the mouse brain.
        J Neuroendocrinol. 2009; 5: 473-480
        • Gassen N.C.
        • Hartmann J.
        • Zschocke J.
        • Stepan J.
        • Hafner K.
        • Zellner A.
        • et al.
        Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans.
        PLoS Med. 2014; 11: e1001755
        • Chung K.
        • Wallace J.
        • Kim S.Y.
        • Kalyanasundaram S.
        • Andalman A.S.
        • Davidson T.J.
        • et al.
        Structural and molecular interrogation of intact biological systems.
        Nature. 2013; 7449: 332-337
        • Yang C.H.
        • Huang C.C.
        • Hsu K.S.
        Novelty exploration elicits a reversal of acute stress-induced modulation of hippocampal synaptic plasticity in the rat.
        J Physiol. 2006; 577: 601-615
        • Zimmer C.
        • Boogert N.J.
        • Spencer K.A.
        Developmental programming: cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood.
        Horm Behav. 2013; 3: 494-500
        • Glaser Y.G.
        • Zubieta J.K.
        • Hsu D.T.
        • Villafuerte S.
        • Mickey B.J.
        • Trucco E.M.
        • et al.
        Indirect effect of corticotropin-releasing hormone receptor 1 gene variation on negative emotionality and alcohol use via right ventrolateral prefrontal cortex.
        J Neurosci. 2014; 11: 4099-4107
        • Veenit V.
        • Riccio O.
        • Sandi C.
        CRHR1 links peripuberty stress with deficits in social and stress-coping behaviors.
        J Psychiatr Res. 2014; 53: 1-7
        • Kuhne C.
        • Puk O.
        • Graw J.
        • Hrabě de Angelis M.
        • Schutz G.
        • Wurst W.
        • et al.
        Visualizing corticotropin-releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele.
        J Comp Neurol. 2012; 14: 3150-3180
        • Reul J.M.
        • Holsboer F.
        On the role of corticotropin-releasing hormone receptors in anxiety and depression.
        Dialogues Clin Neurosci. 2002; 1: 31-46
        • Blank T.
        • Nijholt I.
        • Grammatopoulos D.K.
        • Randeva H.S.
        • Hillhouse E.W.
        • Spiess J.
        Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning.
        J Neurosci. 2003; 2: 700-707
        • Mayr B.
        • Montminy M.
        Transcriptional regulation by the phosphorylation-dependent factor CREB.
        Nat Rev Mol Cell Biol. 2001; 8: 599-609
        • Pawluski J.L.
        • Lambert K.G.
        • Kinsley C.H.
        Neuroplasticity in the maternal hippocampus: relation to cognition and effects of repeated stress.
        Horm Behav. 2016; 77: 86-97
        • Rau A.R.
        • Chappell A.M.
        • Butler T.R.
        • Ariwodola O.J.
        • Weiner J.L.
        Increased basolateral amygdala pyramidal cell excitability may contribute to the anxiogenic phenotype induced by chronic early-life stress.
        J Neurosci. 2015; 26: 9730-9740
        • Bondi C.O.
        • Rodriguez G.
        • Gould G.G.
        • Frazer A.
        • Morilak D.A.
        Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment.
        Neuropsychopharmacology. 2008; 2: 320-331
        • Di Pietro N.C.
        • Black Y.D.
        • Green-Jordan K.
        • Eichenbaum H.B.
        • Kantak K.M.
        Complementary tasks to measure working memory in distinct prefrontal cortex subregions in rats.
        Behav Neurosci. 2004; 5: 1042-1051
        • Graybeal C.
        • Feyder M.
        • Schulman E.
        • Saksida L.M.
        • Bussey T.J.
        • Brigman J.L.
        • et al.
        Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF.
        Nat Neurosci. 2011; 12: 1507-1509
        • Bryce C.A.
        • Howland J.G.
        Stress facilitates late reversal learning using a touchscreen-based visual discrimination procedure in male Long Evans rats.
        Behav Brain Res. 2015; 278: 21-28
        • Dong Z.
        • Bai Y.
        • Wu X.
        • Li H.
        • Gong B.
        • Howland J.G.
        • et al.
        Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze.
        Neuropharmacology. 2013; 64: 65-73
        • Kart-Teke E.
        • De Souza Silva M.A.
        • Huston J.P.
        • Dere E.
        Wistar rats show episodic-like memory for unique experiences.
        Neurobiol Learn Mem. 2006; 2: 173-182
        • Guez J.
        • Cohen J.
        • Naveh-Benjamin M.
        • Shiber A.
        • Yankovsky Y.
        • Saar R.
        • et al.
        Associative memory impairment in acute stress disorder: characteristics and time course.
        Psychiatry Res. 2013; 3: 479-484
        • Passecker J.
        • Barlow S.
        • O’Mara S.M.
        Dissociating effects of acute photic stress on spatial, episodic-like and working memory in the rat.
        Behav Brain Res. 2014; 272: 218-225
        • Jaferi A.
        • Bhatnagar S.
        Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience.
        Brain Res. 2007; 186: 212-223
        • Meng Q.Y.
        • Chen X.N.
        • Tong D.L.
        • Zhou J.N.
        Stress and glucocorticoids regulated corticotropin releasing factor in rat prefrontal cortex.
        Mol Cell Endocrinol. 2011; 1–2: 54-63
        • Merali Z.
        • Anisman H.
        • James J.S.
        • Kent P.
        • Schulkin J.
        Effects of corticosterone on corticotrophin-releasing hormone and gastrin-releasing peptide release in response to an aversive stimulus in two regions of the forebrain (central nucleus of the amygdala and prefrontal cortex).
        Eur J Neurosci. 2008; 1: 165-172
        • Gray J.M.
        • Wilson C.D.
        • Lee T.T.
        • Pittman Q.J.
        • Deussing J.M.
        • Hillard C.J.
        • et al.
        Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function.
        Psychoneuroendocrinology. 2016; 66: 151-158
        • Magalhaes A.C.
        • Holmes K.D.
        • Dale L.B.
        • Comps-Agrar L.
        • Lee D.
        • Yadav P.N.
        • et al.
        CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling.
        Nat Neurosci. 2010; 5: 622-629
        • George O.
        • Sanders C.
        • Freiling J.
        • Grigoryan E.
        • Vu S.
        • Allen C.D.
        • et al.
        Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking.
        Proc Natl Acad Sci U S A. 2012; 44: 18156-18161
        • Kovalovsky D.
        • Refojo D.
        • Liberman A.C.
        • Hochbaum D.
        • Pereda M.P.
        • Coso O.A.
        • et al.
        Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways.
        Mol Endocrinol. 2002; 7: 1638-1651
        • Refojo D.
        • Echenique C.
        • Muller M.B.
        • Reul J.M.
        • Deussing J.M.
        • Wurst W.
        • et al.
        Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas.
        Proc Natl Acad Sci U S A. 2005; 17: 6183-6188
        • Tan H.
        • Zhong P.
        • Yan Z.
        Corticotropin-releasing factor and acute stress prolongs serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons.
        J Neurosci. 2004; 21: 5000-5008
        • Hains A.B.
        • Vu M.A.
        • Maciejewski P.K.
        • van Dyck C.H.
        • Gottron M.
        • Arnsten A.F.
        Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress.
        Proc Natl Acad Sci U S A. 2009; 42: 17957-17962
        • Birnbaum S.G.
        • Yuan P.X.
        • Wang M.
        • Vijayraghavan S.
        • Bloom A.K.
        • Davis D.J.
        • et al.
        Protein kinase C overactivity impairs prefrontal cortical regulation of working memory.
        Science. 2004; 5697: 882-884
        • Ramos B.P.
        • Birnbaum S.G.
        • Lindenmayer I.
        • Newton S.S.
        • Duman R.S.
        • Arnsten A.F.
        Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline.
        Neuron. 2003; 4: 835-845
        • Kobori N.
        • Moore A.N.
        • Dash P.K.
        Altered regulation of protein kinase a activity in the medial prefrontal cortex of normal and brain-injured animals actively engaged in a working memory task.
        J Neurotrauma. 2015; 2: 139-148
        • Gunby P.
        Air controller strike spotlights job stress.
        JAMA. 1981; 15: 1632-1633