Advertisement

An Inflammatory Pathway Links Atherosclerotic Cardiovascular Disease Risk to Neural Activity Evoked by the Cognitive Regulation of Emotion

Published:November 21, 2013DOI:https://doi.org/10.1016/j.biopsych.2013.10.012

      Background

      Cognitive reappraisal is a form of emotion regulation that alters emotional responding by changing the meaning of emotional stimuli. Reappraisal engages regions of the prefrontal cortex that support multiple functions, including visceral control functions implicated in regulating the immune system. Immune activity plays a role in the preclinical pathophysiology of atherosclerotic cardiovascular disease (CVD), an inflammatory condition that is highly comorbid with affective disorders characterized by problems with emotion regulation. Here, we tested whether prefrontal engagement by reappraisal would be associated with atherosclerotic CVD risk and whether this association would be mediated by inflammatory activity.

      Methods

      Community volunteers (n = 157; 30–54 years of age; 80 women) without DSM-IV Axis-1 psychiatric diagnoses or cardiovascular or immune disorders performed a functional neuroimaging task involving the reappraisal of negative emotional stimuli. Carotid artery intima-media thickness and inter-adventitial diameter were measured by ultrasonography and used as markers of preclinical atherosclerosis. Also measured were circulating levels of interleukin-6 (IL-6), an inflammatory cytokine linked to CVD risk and prefrontal neural activity.

      Results

      Greater reappraisal-related engagement of the dorsal anterior cingulate cortex was associated with greater preclinical atherosclerosis and IL-6. Moreover, IL-6 mediated the association of dorsal anterior cingulate cortex engagement with preclinical atherosclerosis. These results were independent of age, sex, race, smoking status, and other known CVD risk factors.

      Conclusions

      The cognitive regulation of emotion might relate to CVD risk through a pathway involving the functional interplay between the anterior cingulate region of the prefrontal cortex and inflammatory activity.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • Benjamin E.J.
        • Berry J.D.
        • Borden W.B.
        • et al.
        Heart disease and stroke statistics—2013 update: A report from the American Heart Association.
        Circulation. 2013; 127: e6-e245
        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • Libby P.
        Current concepts of the pathogenesis of the acute coronary syndromes.
        Circulation. 2001; 104: 365-372
        • DeSteno D.
        • Gross J.J.
        • Kubzansky L.
        Affective science and health: The importance of emotion and emotion regulation.
        Health Psychol. 2013; 32: 474-486
        • Rozanski A.
        • Blumenthal J.A.
        • Kaplan J.
        Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy.
        Circulation. 1999; 99: 2192-2217
        • Suls J.
        • Bunde J.
        Anger, anxiety, and depression as risk factors for cardiovascular disease: The problems and implications of overlapping affective dispositions.
        Psychol Bull. 2005; 131: 260-300
        • Haines A.P.
        • Imeson J.D.
        • Meade T.W.
        Phobic anxiety and ischaemic heart disease.
        Br Med J (Clin Res Ed). 1987; 295: 297-299
        • Kawachi I.
        • Colditz G.A.
        • Ascherio A.
        • Rimm E.B.
        • Giovannucci E.
        • Stampfer M.J.
        • et al.
        Prospective study of phobic anxiety and risk of coronary heart disease in men.
        Circulation. 1994; 89: 1992-1997
        • Matthews K.A.
        Psychological perspectives on the development of coronary heart disease.
        Am Psychol. 2005; 60: 783-796
        • Kawachi I.
        • Sparrow D.
        • Vokonas P.S.
        • Weiss S.T.
        Symptoms of anxiety and risk of coronary heart disease. The Normative Aging Study.
        Circulation. 1994; 90: 2225-2229
        • Krantz D.S.
        • McCeney M.K.
        Effects of psychological and social factors on organic disease: A critical assessment of research on coronary heart disease.
        Annu Rev Psychol. 2002; 53: 341-369
        • Gross J.J.
        The emerging field of emotion regulation: An integrative review.
        Rev Gen Psychol. 1998; 2: 271-299
        • Gross J.J.
        • Thompson R.A.
        Emotion regulation: Conceptual foundations.
        in: Gross J.J. Handbook of Emotion Regulation. Guilford Press, New York2007
        • Gross J.J.
        • John O.P.
        Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being.
        J Pers Soc Psychol. 2003; 85: 348-362
        • McRae K.
        • Jacobs S.E.
        • Ray R.D.
        • John O.P.
        • Gross J.J.
        Individual differences in reappraisal ability: Links to reappraisal frequency, well-being, and cognitive control.
        J Res Pers. 2012; 46: 2-7
        • Gross J.J.
        Emotion regulation in adulthood: Timing is everything.
        Curr Dir Psychol Sci. 2001; 10: 214-219
        • Ochsner K.N.
        • Gross J.J.
        The cognitive control of emotion.
        Trends Cogn Sci. 2005; 9: 242-249
        • Diekhof E.K.
        • Geier K.
        • Falkai P.
        • Gruber O.
        Fear is only as deep as the mind allows: A coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect.
        Neuroimage. 2011; 58: 275-285
        • Ochsner K.N.
        • Silvers J.A.
        • Buhle J.T.
        Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion.
        Ann N Y Acad Sci. 2012; 1251: E1-24
        • Buhle J.T.
        • Silvers J.A.
        • Wager T.D.
        • Lopez R.
        • Onyemekwu C.
        • Kober H.
        • et al.
        Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies [published online ahead of print June 13].
        Cereb Cortex. 2013;
        • Kalisch R.
        The functional neuroanatomy of reappraisal: Time matters.
        Neurosci Biobehav Rev. 2009; 33: 1215-1226
        • Etkin A.
        • Egner T.
        • Kalisch R.
        Emotional processing in anterior cingulate and medial prefrontal cortex.
        Trends Cogn Sci. 2011; 15: 85-93
        • Vilensky J.A.
        • van Hoesen G.W.
        Corticopontine projections from the cingulate cortex in the rhesus monkey.
        Brain Res. 1981; 205: 391-395
        • Öngür D.
        • An X.
        • Price J.
        Prefrontal cortical projections to the hypothalamus in macaque monkeys.
        J Comp Neurol. 1998; 401: 480-505
        • An X.
        • Bandler R.
        • Ongur D.
        • Price J.
        Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys.
        J Comp Neurol. 1998; 410: 455-479
        • Barbas H.
        • Saha S.
        • Rempel-Clower N.
        • Ghashghaei T.
        Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression.
        BMC Neurosci. 2003; 4: 25
        • Ghashghaei T.
        • Barbas H.
        Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amydgala of rhesus monkey.
        Neuroscience. 2002; 115: 1261-1279
        • Chiba T.
        • Kayahara T.
        • Nakano K.
        Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata.
        Brain Res. 2001; 888: 83-101
        • Freedman L.J.
        • Insel T.R.
        • Smith Y.
        Subcortical projections of area 25 (subgenual cortex) of the macaque monkey.
        J Comp Neurol. 2000; 421: 172-188
        • Vertes R.P.
        Differential projections of the infralimbic and prelimbic cortex in the rat.
        Synapse. 2004; 51: 32-58
        • Morecraft R.J.
        • McNeal D.W.
        • Stilwell-Morecraft K.S.
        • Gedney M.
        • Ge J.
        • Schroeder C.M.
        • et al.
        Amygdala interconnections with the cingulate motor cortex in the rhesus monkey.
        J Comp Neurol. 2007; 500: 134-165
        • Gabbott P.L.
        • Warner T.A.
        • Jays P.R.
        • Salway P.
        • Busby S.J.
        Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers.
        J Comp Neurol. 2005; 492: 145-177
        • Rinaman L.
        Hindbrain noradrenergic A2 neurons: Diverse roles in autonomic, endocrine, cognitive, and behavioral functions.
        Am J Physiol Regul Integr Comp Physiol. 2011; 300 (R222–235)
        • Öngür D.
        • Price J.
        The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys, and humans.
        Cereb Cortex. 2000; 10: 206-219
        • Goehler L.E.
        • Gaykema R.P.
        • Hansen M.K.
        • Anderson K.
        • Maier S.F.
        • Watkins L.R.
        Vagal immune-to-brain communication: A visceral chemosensory pathway.
        Auton Neurosci. 2000; 85: 49-59
        • Nieuwenhuys R.
        The insular cortex: A review.
        Prog Brain Res. 2012; 195: 123-163
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • et al.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Craig A.D.
        How do you feel? Interoception: The sense of the physiological condition of the body.
        Nat Rev Neurosci. 2002; 3: 655-666
        • Critchley H.D.
        • Wiens S.
        • Rotshtein P.
        • Ohman A.
        • Dolan R.J.
        Neural systems supporting interoceptive awareness.
        Nat Neurosci. 2004; 7: 189-195
        • Kober H.
        • Barrett L.F.
        • Joseph J.
        • Bliss-Moreau E.
        • Lindquist K.
        • Wager T.D.
        Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies.
        Neuroimage. 2008; 42: 998-1031
        • Beissner F.
        • Meissner K.
        • Bar K.J.
        • Napadow V.
        The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function.
        J Neurosci. 2013; 33: 10503-10511
        • Urry H.L.
        • van Reekum C.M.
        • Johnstone T.
        • Davidson R.J.
        Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion.
        Neuroimage. 2009; 47: 852-863
        • Urry H.L.
        • van Reekum C.M.
        • Johnstone T.
        • Kalin N.H.
        • Thurow M.E.
        • Schaefer H.S.
        • et al.
        Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults.
        J Neurosci. 2006; 26: 4415-4425
        • Eisenberger N.I.
        • Cole S.W.
        Social neuroscience and health: Neurophysiological mechanisms linking social ties with physical health.
        Nat Neurosci. 2012; 15: 669-674
        • Irwin M.R.
        • Cole S.W.
        Reciprocal regulation of the neural and innate immune systems.
        Nat Rev Immunol. 2011; 11: 625-632
        • Miller A.H.
        • Haroon E.
        • Raison C.L.
        • Felger J.C.
        Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits.
        Depress Anxiety. 2013; 30: 297-306
        • Kiecolt-Glaser J.K.
        • McGuire L.
        • Robles T.F.
        • Glaser R.
        Emotions, morbidity, and mortality: New perspectives from psychoneuroimmunology.
        Annu Rev Psychol. 2002; 53: 83-107
        • Larsson P.T.
        • Hallerstam S.
        • Rosfors S.
        • Wallén N.H.
        Circulating markers of inflammation are related to carotid artery atherosclerosis.
        Int Angiology. 2005; 24: 43-51
        • Ridker P.M.
        • Brown N.J.
        • Vaughan D.E.
        • Harrison D.G.
        • Mehta J.L.
        Established and emerging plasma biomarkers in the prediction of first atherothrombotic events.
        Circulation. 2004; 109: IV6-19
        • Ridker P.M.
        • Rifai N.
        • Stampfer M.J.
        • Hennekens C.H.
        Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men.
        Circulation. 2000; 101: 1767-1772
        • Lorenz M.W.
        • Markus H.S.
        • Bots M.L.
        • Rosvall M.
        • Sitzer M.
        Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis.
        Circulation. 2007; 115: 459-467
        • Eigenbrodt M.L.
        • Sukhija R.
        • Rose K.M.
        • Tracy R.E.
        • Couper D.J.
        • Evans G.W.
        • et al.
        Common carotid artery wall thickness and external diameter as predictors of prevalent and incident cardiac events in a large population study.
        Cardiovasc Ultrasound. 2007; 5: 11
        • Baldassarre D.
        • Hamsten A.
        • Veglia F.
        • de Faire U.
        • Humphries S.E.
        • Smit A.J.
        • et al.
        Measurements of carotid intima-media thickness and of interadventitia common carotid diameter improve prediction of cardiovascular events: Results of the IMPROVE (Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population) study.
        J Am Coll Cardiol. 2012; 60: 1489-1499
        • Labropoulos N.
        • Zarge J.
        • Mansour M.A.
        • Kang S.S.
        • Baker W.H.
        Compensatory arterial enlargement is a common pathobiologic response in early atherosclerosis.
        Am J Surg. 1998; 176: 140-143
        • Pignoli P.
        • Tremoli E.
        • Poli A.
        • Oreste P.
        • Raoletti R.
        Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging.
        Circulation. 1986; 74: 1399-1406
        • Bonithon-Kopp C.
        • Touboul P.J.
        • Berr C.
        • Magne C.
        • Ducimetiere P.
        Factors of carotid arterial enlargement in a population aged 59 to 71 years: The EVA study.
        Stroke. 1996; 27: 654-660
        • Eigenbrodt M.L.
        • Bursac Z.
        • Rose K.M.
        • Couper D.J.
        • Tracy R.E.
        • Evans G.W.
        • et al.
        Common carotid arterial interadventitial distance (diameter) as an indicator of the damaging effects of age and atherosclerosis, a cross-sectional study of the Atherosclerosis Risk in Community Cohort Limited Access Data (ARICLAD), 1987–89.
        Cardiovasc Ultrasound. 2006; 4: 1
        • Heiss G.
        • Sharrett R.
        • Barnes R.
        • Chambless L.E.
        • Szklo M.
        • Alzola C.
        • et al.
        Carotid atherosclerosis measured by B-mode ultrasound in populations: Associations with cardiovascular risk factors in the ARIC study.
        Am J Epidemiol. 1991; 134: 250-256
        • Kawamoto R.
        • Tomita H.
        • Oka Y.
        • Ohtsuka N.
        Association between risk factors and carotid enlargement.
        Intern Med. 2006; 45: 503-509
        • Marsland A.L.
        • McCaffery J.M.
        • Muldoon M.F.
        • Manuck S.B.
        Systemic inflammation and the metabolic syndrome among middle-aged community volunteers.
        Metabolism. 2010; 59: 1801-1808
        • Agarwal S.
        • Jacobs Jr, D.R.
        • Vaidya D.
        • Sibley C.T.
        • Jorgensen N.W.
        • Rotter J.I.
        • et al.
        Metabolic syndrome derived from principal component analysis and incident cardiovascular events: The Multi Ethnic Study of Atherosclerosis (MESA) and Health, Aging, and Body Composition (Health ABC).
        Cardiol Res Pract. 2012; 2012: 919425
        • Ochsner K.N.
        • Ray R.D.
        • Cooper J.C.
        • Robertson E.R.
        • Chopra S.
        • Gabrieli J.D.
        • et al.
        For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion.
        Neuroimage. 2004; 23: 483-499
        • Ochsner K.N.
        • Bunge S.A.
        • Gross J.J.
        • Gabrieli J.D.
        Rethinking feelings: An FMRI study of the cognitive regulation of emotion.
        J Cogn Neurosci. 2002; 14: 1215-1229
        • Gyurak A.
        • Gross J.J.
        • Etkin A.
        Explicit and implicit emotion regulation: A dual-process framework.
        Cog Emot. 2011; 25: 400-412
        • Preacher K.J.
        • Hayes A.F.
        Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models.
        Beh Res Meth. 2008; 40: 879-891
        • Preacher K.J.
        • Hayes A.F.
        SPSS and SAS procedures for estimating indirect effects in simple mediation models.
        Beh Res Meth. 2004; 36: 717-731
        • Gross J.
        Handbook of Emotion Regulation.
        Guilford Press, New York2007
        • Kring A.M.
        • Sloan D.M.
        Emotion Regulation and Psychopathology.
        Guilford Press, New York2010
        • Kubzansky L.D.
        • Park N.
        • Peterson C.
        • Vokonas P.
        • Sparrow D.
        Healthy psychological functioning and incident coronary heart disease: The importance of self-regulation.
        Arch Gen Psychiatry. 2011; 68: 400-408
        • Appleton A.A.
        • Stephen L.
        • Buka S.L.
        • Loucks E.B.
        • Gilman S.E.
        • Kubzansky L.D.
        Divergent associations of adaptive and maladaptive emotion regulation strategies with inflammation.
        Health Psychol. 2013; 32: 748-756
        • Ridker P.M.
        C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: Moving an inflammatory hypothesis toward consensus.
        J Am Coll Cardiol. 2007; 49: 2129-2138
        • Harrison N.A.
        • Brydon L.
        • Walker C.
        • Gray M.A.
        • Steptoe A.
        • Dolan R.J.
        • et al.
        Neural origins of human sickness in interoceptive responses to inflammation.
        Biol Psychiatry. 2009; 66: 415-422
        • Harrison N.A.
        • Cooper E.
        • Voon V.
        • Miles K.
        • Critchley H.D.
        Central autonomic network mediates cardiovascular responses to acute inflammation: Relevance to increased cardiovascular risk in depression?.
        Brain Behav Immun. 2013; 31: 189-196
        • Hannestad J.
        • Subramanyam K.
        • Dellagioia N.
        • Planeta-Wilson B.
        • Weinzimmer D.
        • Pittman B.
        • et al.
        Glucose metabolism in the insula and cingulate is affected by systemic inflammation in humans.
        J Nucl Med. 2012; 53: 601-607
        • Kullmann J.S.
        • Grigoleit J.S.
        • Lichte P.
        • Kobbe P.
        • Rosenberger C.
        • Banner C.
        • et al.
        Neural response to emotional stimuli during experimental human endotoxemia.
        Hum Brain Mapp. 2013; 34: 2217-2227
        • Slavich G.M.
        • Way B.M.
        • Eisenberger N.I.
        • Taylor S.E.
        Neural sensitivity to social rejection is associated with inflammatory responses to social stress.
        Proc Natl Acad Sci U S A. 2010; 107: 14817-14822
        • O’Connor M.F.
        • Irwin M.R.
        • Wellisch D.K.
        When grief heats up: Pro-inflammatory cytokines predict regional brain activation.
        Neuroimage. 2009; 47: 891-896
        • Ohira H.
        • Isowa T.
        • Nomura M.
        • Ichikawa N.
        • Kimura K.
        • Miyakoshi M.
        • et al.
        Imaging brain and immune association accompanying cognitive appraisal of an acute stressor.
        Neuroimage. 2008; 39: 500-514
        • Ohira H.
        • Fukuyama S.
        • Kimura K.
        • Nomura M.
        • Isowa T.
        • Ichikawa N.
        • et al.
        Regulation of natural killer cell redistribution by prefrontal cortex during stochastic learning.
        Neuroimage. 2009; 47: 897-907
        • Marsland A.L.
        • Petersen K.L.
        • Sathanoori R.
        • Muldoon M.F.
        • Neumann S.A.
        • Ryan C.
        • et al.
        Interleukin-6 covaries inversely with cognitive performance among middle-aged community volunteers.
        Psychosom Med. 2006; 68: 895-903
        • Goldin P.R.
        • McRae K.
        • Ramel W.
        • Gross J.J.
        The neural bases of emotion regulation: Reappraisal and suppression of negative emotion.
        Biol Psychiatry. 2008; 63: 577-586
        • Waugh C.E.
        • Hamilton J.P.
        • Gotlib I.H.
        The neural temporal dynamics of the intensity of emotional experience.
        Neuroimage. 2010; 49: 1699-1707
        • Gianaros P.J.
        • Hariri A.R.
        • Sheu L.K.
        • Muldoon M.F.
        • Sutton-Tyrrell K.
        • Manuck S.B.
        Preclinical atherosclerosis covaries with individual differences in reactivity and functional connectivity of the amygdala.
        Biol Psychiatry. 2008; 65: 943-950
        • Hariri A.R.
        • Tessitore A.
        • Mattay V.S.
        • Fera F.
        • Weinberger D.R.
        The amygdala response to emotional stimuli: A comparison of faces and scenes.
        Neuroimage. 2002; 17: 317-323
        • Inagaki T.K.
        • Muscatell K.A.
        • Irwin M.R.
        • Cole S.W.
        • Eisenberger N.I.
        Inflammation selectively enhances amygdala activity to socially threatening images.
        Neuroimage. 2012; 59: 3222-3226
        • Critchley H.D.
        Neural mechanisms of autonomic, affective, and cognitive integration.
        J Comp Neurol. 2005; 493: 154-166
        • Shackman A.J.
        • Salomons T.V.
        • Slagter H.A.
        • Fox A.S.
        • Winter J.J.
        • Davidson R.J.
        The integration of negative affect, pain and cognitive control in the cingulate cortex.
        Nat Rev Neurosci. 2011; 12: 154-167