Advertisement

Selective, Retrieval-Independent Disruption of Methamphetamine-Associated Memory by Actin Depolymerization

Published:September 09, 2013DOI:https://doi.org/10.1016/j.biopsych.2013.07.036

      Background

      Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown.

      Methods

      Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity.

      Results

      Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory.

      Conclusions

      Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McGaugh J.L.
        Time-dependent processes in memory storage.
        Science. 1966; 153: 1351-1358
        • Muller G.E.
        • Pilzecker A.
        Experimentelle beiträge zur lehre vom gedächtnis.
        Z Psychol. 1900; 1: 1-288
        • Finnie P.S.B.
        • Nader K.
        The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation.
        Neurosci Biobehav Rev. 2012; 36: 1667-1707
        • Nader K.
        • Schafe G.E.
        • LeDoux J.E.
        The labile nature of consolidation theory.
        Nat Rev Neurosci. 2000; 1: 216-219
        • Orsini C.A.
        • Maren S.
        Neural and cellular mechanisms of fear and extinction memory formation.
        Neurosci Biobehav Rev. 2012; 36: 1773-1802
        • Fiorenza N.G.
        • Sartor D.
        • Myskiw J.C.
        • Izquierdo I.
        Treatment of fear memories: Interactions between extinction and reconsolidation.
        An Acad Bras Cienc. 2011; 83: 1363-1372
        • Medina J.H.
        • Bekinschtein P.
        • Cammarota M.
        • Izquierdo I.
        Do memories consolidate to persist or do they persist to consolidate?.
        Behav Brain Res. 2008; 192: 61-69
        • Cui Z.
        • Wang H.
        • Tan Y.
        • Zaia K.A.
        • Zhang S.
        • Tsien J.Z.
        Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain.
        Neuron. 2004; 41: 781-793
        • Miller C.A.
        • Gavin C.F.
        • White J.A.
        • Parrish R.R.
        • Honasoge A.
        • Yancey C.R.
        • et al.
        Cortical DNA methylation maintains remote memory.
        Nat Neurosci. 2010; 13: 664-666
        • Dudai Y.
        The restless engram: Consolidations never end.
        Annu Rev Neurosci. 2012; 35: 227-247
        • Roberson E.D.
        • Sweatt J.D.
        A biochemical blueprint for long-term memory.
        Learn Mem. 1999; 6: 381-388
        • Segal M.
        Dendritic spines and long-term plasticity.
        Nat Rev Neurosci. 2005; 6: 277-284
        • Roth T.L.
        • Roth E.D.
        • Sweatt J.D.
        Epigenetic regulation of genes in learning and memory.
        Essays Biochem. 2010; 48: 263-274
        • Roediger H.L.
        • Dudai Y.
        • Fitzpatrick S.M.
        Science of Memory: Concepts, 1 ed.
        Oxford University Press, New York2007
        • Halladay L.R.
        • Zelikowsky M.
        • Blair H.T.
        • Fanselow M.S.
        Reinstatement of extinguished fear by an unextinguished conditional stimulus.
        Front Behav Neurosci. 2012; 6: 18
        • Jones B.
        • Bukoski E.
        • Nadel L.
        • Fellous J.-M.
        Remaking memories: Reconsolidation updates positively motivated spatial memory in rats.
        Learn Mem. 2012; 19: 91-98
        • Monfils M.-H.
        • Cowansage K.K.
        • Klann E.
        • LeDoux J.E.
        Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories.
        Science. 2009; 324: 951-955
        • Kiefer F.
        • Dinter C.
        New approaches to addiction treatment based on learning and memory.
        in: Sommer W.H. Spanagel R. Behavioral Neurobiology of Alcohol Addiction. Springer Berlin Heidelberg, New York2013: 671-684
        • Milton A.L.
        • Everitt B.J.
        The persistence of maladaptive memory: Addiction, drug memories and anti-relapse treatments.
        Neurosci Biobehav Rev. 2012; 36: 1119-1139
        • Torregrossa M.M.
        • Corlett P.R.
        • Taylor J.R.
        Aberrant learning and memory in addiction.
        Neurobiol Learn Mem. 2011; 96: 609-623
        • Parsons R.G.
        • Ressler K.J.
        Implications of memory modulation for post-traumatic stress and fear disorders.
        Nat Neurosci. 2013; 16: 146-153
        • Kasai H.
        • Fukuda M.
        • Watanabe S.
        • Hayashi-Takagi A.
        • Noguchi J.
        Structural dynamics of dendritic spines in memory and cognition.
        Trends Neurosci. 2010; 33: 121-129
        • Yang G.
        • Pan F.
        • Gan W.-B.
        Stably maintained dendritic spines are associated with lifelong memories.
        Nature. 2009; 462: 920-924
        • Lai C.S.W.
        • Franke T.F.
        • Gan W.-B.
        Opposite effects of fear conditioning and extinction on dendritic spine remodelling.
        Nature. 2012; 483: 87-91
        • Star E.N.
        • Kwiatkowski D.J.
        • Murthy V.N.
        Rapid turnover of actin in dendritic spines and its regulation by activity.
        Nat Neurosci. 2002; 5: 239-246
        • Kasai H.
        • Matsuzaki M.
        • Noguchi J.
        • Yasumatsu N.
        • Nakahara H.
        Structure–stability–function relationships of dendritic spines.
        Trends Neurosci. 2003; 26: 360-368
        • Smart F.M.
        • Halpain S.
        Regulation of dendritic spine stability.
        Hippocampus. 2000; 10: 542-554
        • Kim C.-H.
        • Lisman J.E.
        A role of actin filament in synaptic transmission and long-term potentiation.
        J Neurosci. 1999; 19: 4314-4324
        • Lin B.
        • Kramár E.A.
        • Bi X.
        • Brucher F.A.
        • Gall C.M.
        • Lynch G.
        Theta stimulation polymerizes actin in dendritic spines of hippocampus.
        J Neurosci. 2005; 25: 2062-2069
        • Rex C.S.
        • Gavin C.F.
        • Rubio M.D.
        • Kramar E.A.
        • Chen L.Y.
        • Jia Y.
        • et al.
        Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation.
        Neuron. 2010; 67: 603-617
        • Krucker T.
        • Siggins G.R.
        • Halpain S.
        Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus.
        Proc Natl Acad Sci U S A. 2000; 97: 6856-6861
        • Hotulainen P.
        • Hoogenraad C.C.
        Actin in dendritic spines: Connecting dynamics to function.
        J Cell Biol. 2010; 189: 619-629
        • Lynch G.
        • Rex C.S.
        • Gall C.M.
        LTP consolidation: Substrates, explanatory power, and functional significance.
        Neuropharmacology. 2007; 52: 12-23
        • Mantzur L.
        • Joels G.
        • Lamprecht R.
        Actin polymerization in lateral amygdala is essential for fear memory formation.
        Neurobiol Learn Mem. 2009; 91: 85-88
        • Rehberg K.
        • Bergado-Acosta J.R.
        • Koch J.C.
        • Stork O.
        Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala.
        Neurobiol Learn Mem. 2010; 94: 117-126
        • Fischer A.
        • Sananbenesi F.
        • Schrick C.
        • Spiess J.
        • Radulovic J.
        Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear.
        J Neurosci. 2004; 24: 1962-1966
        • Gavin C.F.
        • Rubio M.D.
        • Young E.
        • Miller C.
        • Rumbaugh G.
        Myosin II motor activity in the lateral amygdala is required for fear memory consolidation.
        Learn Mem. 2012; 19: 9-14
        • Jaffe J.H.
        Trivializing dependence.
        Br J Addict. 1990; 85 (discussion 1429–1431): 1425-1427
        • Tiffany S.T.
        A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes.
        Psychol Rev. 1990; 97: 147-168
        • Robinson T.E.
        • Berridge K.C.
        The neural basis of drug craving: An incentive-sensitization theory of addiction.
        Brain Res Brain Res Rev. 1993; 18: 247-291
        • Kosten T.R.
        • Scanley B.E.
        • Tucker K.A.
        • Oliveto A.
        • Prince C.
        • Sinha R.
        • et al.
        Cue-induced brain activity changes and relapse in cocaine-dependent patients.
        Neuropsychopharmacology. 2005; 31: 644-650
        • Childress A.R.
        • Mozley P.D.
        • McElgin W.
        • Fitzgerald J.
        • Reivich M.
        • O’Brien C.P.
        Limbic activation during cue-induced cocaine craving.
        Am J Psychiatry. 1999; 156: 11-18
        • Grant S.
        • London E.D.
        • Newlin D.B.
        • Villemagne V.L.
        • Liu X.
        • Contoreggi C.
        • et al.
        Activation of memory circuits during cue-elicited cocaine craving.
        Proc Natl Acad Sci U S A. 1996; 93: 12040-12045
        • Wells A.M.
        • Arguello A.A.
        • Xie X.
        • Blanton M.A.
        • Lasseter H.C.
        • Reittinger A.M.
        • Fuchs R.A.
        Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats.
        Neuropsychopharmacology. 2013; 38: 753-762
        • Xue Y.-X.
        • Luo Y.-X.
        • Wu P.
        • Shi H.-S.
        • Xue L.-F.
        • Chen C.
        • et al.
        A memory retrieval-extinction procedure to prevent drug craving and relapse.
        Science. 2012; 336: 241-245
        • Miller C.A.
        • Marshall J.F.
        Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory.
        Neuron. 2005; 47: 873-884
        • Lee J.L.C.
        • Di Ciano P.
        • Thomas K.L.
        • Everitt B.J.
        Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior.
        Neuron. 2005; 47: 795-801
        • Malvaez M.
        • Sanchis-Segura C.
        • Vo D.
        • Lattal K.M.
        • Wood M.A.
        Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference.
        Biol Psychiatry. 2010; 67: 36-43
        • Hou Y.-Y.
        • Lu B.
        • Li M.
        • Liu Y.
        • Chen J.
        • Chi Z.-Q.
        • et al.
        Involvement of actin rearrangements within the amygdala and the dorsal hippocampus in aversive memories of drug withdrawal in acute morphine-dependent rats.
        J Neurosci. 2009; 29: 12244-12254
        • Liu Y.
        • Zhou Q.-X.
        • Hou Y.-Y.
        • Lu B.
        • Yu C.
        • Chen J.
        • et al.
        Actin polymerization-dependent increase in synaptic Arc/Arg3.1 expression in the amygdala is crucial for the expression of aversive memory associated with drug withdrawal.
        J Neurosci. 2012; 32: 12005-12017
        • Toda S.
        • Shen H.-W.
        • Peters J.
        • Cagle S.
        • Kalivas P.W.
        Cocaine increases actin cycling: Effects in the reinstatement model of drug seeking.
        J Neurosci. 2006; 26: 1579-1587
        • Everitt B.J.
        • Morris K.A.
        • O’Brien A.
        • Robbins T.W.
        The basolateral amygdala-ventral striatal system and conditioned place preference: Further evidence of limbic-striatal interactions underlying reward-related processes.
        Neuroscience. 1991; 42: 1-18
        • Hiroi N.
        • White N.
        The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference.
        J Neurosci. 1991; 11: 2107-2116
        • Brown E.E.
        • Fibiger H.C.
        Differential effects of excitotoxic lesions of the amygdala on cocaine-induced conditioned locomotion and conditioned place preference.
        Psychopharmacology. 1993; 113: 123-130
        • Miller C.A.
        • Marshall J.F.
        Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat.
        Eur J Neurosci. 2005; 21: 1385-1393
        • Miller C.A.
        • Marshall J.F.
        Altered prelimbic cortex output during cue-elicited drug seeking.
        J Neurosci. 2004; 24: 6889-6897
        • Fuchs R.A.
        • Evans K.A.
        • Ledford C.C.
        • Parker M.P.
        • Case J.M.
        • Mehta R.H.
        • et al.
        The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats.
        Neuropsychopharmacology. 2004; 30: 296-309
        • Lasseter H.C.
        • Wells A.M.
        • Xie X.
        • Fuchs R.A.
        Interaction of the basolateral amygdala and orbitofrontal cortex is critical for drug context-induced reinstatement of cocaine-seeking behavior in rats.
        Neuropsychopharmacology. 2011; 36: 711-720
        • Reichel C.M.
        • Ramsey L.A.
        • Schwendt M.
        • McGinty J.F.
        • See R.E.
        Methamphetamine-induced changes in the object recognition memory circuit.
        Neuropharmacology. 2012; 62: 1119-1126
        • Morton W.M.
        • Ayscough K.R.
        • McLaughlin P.J.
        Latrunculin alters the actin-monomer subunit interface to prevent polymerization.
        Nat Cell Biol. 2000; 2: 376-378
        • LeDoux J.
        • Cicchetti P.
        • Xagoraris A.
        • Romanski L.
        The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning.
        J Neurosci. 1990; 10: 1062-1069
        • Rodrigues S.M.
        • Schafe G.E.
        • LeDoux J.E.
        Molecular mechanisms underlying emotional learning and memory in the lateral amygdala.
        Neuron. 2004; 44: 75-91
        • Sierra-Mercado D.
        • Padilla-Coreano N.
        • Quirk G.J.
        Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear.
        Neuropsychopharmacology. 2011; 36: 529-538
        • Rademacher D.J.
        • Rosenkranz J.A.
        • Morshedi M.M.
        • Sullivan E.M.
        • Meredith G.E.
        Amphetamine-associated contextual learning is accompanied by structural and functional plasticity in the basolateral amygdala.
        J Neurosci. 2010; 30: 4676-4686
        • Feng G.
        • Mellor R.H.
        • Bernstein M.
        • Keller-Peck C.
        • Nguyen Q.T.
        • Wallace M.
        • et al.
        Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP.
        Neuron. 2000; 28: 41-51
        • Kovács M.
        • Tóth J.
        • Hetényi C.
        • Málnási-Csizmadia A.
        • Sellers J.R.
        Mechanism of blebbistatin inhibition of myosin II.
        J Biol Chem. 2004; 279: 35557-35563
        • Pastalkova E.
        • Serrano P.
        • Pinkhasova D.
        • Wallace E.
        • Fenton A.A.
        • Sacktor T.C.
        Storage of spatial information by the maintenance mechanism of LTP.
        Science. 2006; 313: 1141-1144
        • Volk L.J.
        • Bachman J.L.
        • Johnson R.
        • Yu Y.
        • Huganir R.L.
        PKM-[zgr] is not required for hippocampal synaptic plasticity, learning and memory.
        Nature. 2013; 493: 420-423
        • Lee A.M.
        • Kanter B.R.
        • Wang D.
        • Lim J.P.
        • Zou M.E.
        • Qiu C.
        • et al.
        Prkcz null mice show normal learning and memory.
        Nature. 2013; 493: 416-419
        • Sacktor T.C.
        How does PKMζ maintain long-term memory?.
        Nat Rev Neurosci. 2011; 12: 9-15
        • Schiller D.
        • Monfils M.-H.
        • Raio C.M.
        • Johnson D.C.
        • LeDoux J.E.
        • Phelps E.A.
        Preventing the return of fear in humans using reconsolidation update mechanisms.
        Nature. 2010; 463: 49-53
        • Tolliver B.K.
        • McRae-Clark A.L.
        • Saladin M.
        • Price K.L.
        • Simpson A.N.
        • DeSantis S.M.
        • et al.
        Determinants of cue-elicited craving and physiologic reactivity in methamphetamine-dependent subjects in the laboratory.
        Am J Drug Alcohol Abuse. 2010; 36: 106-113
        • Medeiros N.A.
        • Burnette D.T.
        • Forscher P.
        Myosin II functions in actin-bundle turnover in neuronal growth cones.
        Nat Cell Biol. 2006; 8: 216-226
        • Grimm J.W.
        • Lu L.
        • Hayashi T.
        • Hope B.T.
        • Su T.-P.
        • Shaham Y.
        Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: Implications for incubation of cocaine craving.
        J Neurosci. 2003; 23: 742-747
        • Tran-Nguyen L.T.L.
        • Fuchs R.A.
        • Coffey G.P.
        • Baker D.A.
        • Odell L.E.
        • Neisewander J.L.
        Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal.
        Neuropsychopharmacology. 1998; 19: 48-59
        • Higley M.J.
        • Sabatini B.L.
        Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors.
        Nat Neurosci. 2010; 13: 958-966
        • Rex C.S.
        • Lin C.-Y.
        • Kramár E.A.
        • Chen L.Y.
        • Gall C.M.
        • Lynch G.
        Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus.
        J Neurosci. 2007; 27: 3017-3029
        • Shimada A.
        • Mason C.A.
        • Morrison M.E.
        TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells.
        J Neurosci. 1998; 18: 8559-8570