Prereproductive Stress to Female Rats Alters Corticotropin Releasing Factor Type 1 Expression in Ova and Behavior and Brain Corticotropin Releasing Factor Type 1 Expression in Offspring


      Human and animal studies indicate that vulnerability to stress may be heritable and that changes in germline may mediate some transgenerational effects. Corticotropin releasing factor type 1 (CRF1) is a key component in the stress response. We investigated changes in CRF1 expression in brain and ova of stressed female rats and in the brain of their neonate and adult offspring. Behavioral changes in adulthood were also assessed.


      Adult female rats underwent chronic unpredictable stress. We extracted mature oocytes and brain regions from a subset of rats and mated the rest 2 weeks following the stress procedure. CRF1 expression was assessed using quantitative reverse-transcription polymerase chain reaction. Tests of anxiety and aversive learning were used to examine behavior of offspring in adulthood.


      We show that chronic unpredictable stress leads to an increase in CRF1 messenger RNA expression in frontal cortex and mature oocytes. Neonatal offspring of stressed female rats show an increase in brain CRF1 expression. In adulthood, offspring of stressed female rats show sex differences in both CRF1 messenger RNA expression and behavior. Moreover, CRF1 expression patterns in frontal cortex of female offspring depend upon both maternal and individual adverse experience.


      Our findings demonstrate that stress affects CRF1 expression in brain but also in ova, pointing to a possible mechanism of transgenerational transmission. In offspring, stress-induced changes are evident at birth and are thus unlikely to result from altered maternal nurturance. Finally, brain CRF1 expression in offspring depends upon gender and upon maternal and individual exposure to adverse environment.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Baider L.
        • Peretz T.
        • Hadani P.E.
        • Perry S.
        • Avramov R.
        • De-Nour A.K.
        Transmission of response to trauma? Second-generation Holocaust survivors' reaction to cancer.
        Am J Psychiatry. 2000; 157: 904-910
        • Yehuda R.
        • Bierer L.M.
        Transgenerational transmission of cortisol and PTSD risk.
        Prog Brain Res. 2008; 167: 121-135
        • Nagata D.K.
        The Japanese American internment: Exploring the transgenerational consequences of traumatic stress.
        J Trauma Stress. 1990; 3: 47-69
        • Kupelian D.
        • Kalayjian A.S.
        • Kassabian A.
        The Turkish Genocide of the Armenians: Continuing Effects on Survivors and their Families Eight Decades After Massive Trauma.
        Plenum Press, New York1998
        • van-IJzendoorn M.H.
        • Bakermans-Kranenburg M.J.
        • Sagi-Schwartz A.
        Are children of Holocaust survivors less well-adapted? A meta-analytic investigation of secondary traumatization.
        J Trauma Stress. 2003; 16: 459-469
        • Sagi-Schwartz A.
        • van IJzendoorn M.H.
        • Bakermans-Kranenburg M.J.
        Does intergenerational transmission of trauma skip a generation? No meta-analytic evidence for tertiary traumatization with third generation of Holocaust survivors.
        Attach Hum Dev. 2008; 10: 105-121
        • Franklin T.B.
        • Linder N.
        • Russig H.
        • Thony B.
        • Mansuy I.M.
        Influence of early stress on social abilities and serotonergic functions across generations in mice.
        PLoS One. 2011; 6: e21842
        • Weiss I.C.
        • Franklin T.B.
        • Vizi S.
        • Mansuy I.M.
        Inheritable effect of unpredictable maternal separation on behavioral responses in mice.
        Front Behav Neurosci. 2011; 5 (doi:10.3389/fnbeh.2011.00003): 3
        • Champagne F.A.
        Epigenetic mechanisms and the transgenerational effects of maternal care.
        Front Neuroendocrinol. 2008; 29: 386-397
        • Champagne F.A.
        • Meaney M.J.
        Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty.
        Behav Neurosci. 2007; 121: 1353-1363
        • Roth T.L.
        • Lubin F.D.
        • Funk A.J.
        • Sweatt J.D.
        Lasting epigenetic influence of early-life adversity on the BDNF gene.
        Biol Psychiatry. 2009; 65: 760-769
        • Weinstock M.
        The long-term behavioural consequences of prenatal stress.
        Neurosci Biobehav Rev. 2008; 32: 1073-1086
        • Leshem M.
        • Schulkin J.
        Transgenerational effects of infantile adversity and enrichment in male and female rats.
        Dev Psychobiol. 2012; 54: 169-186
        • Shachar-Dadon A.
        • Schulkin J.
        • Leshem M.
        Adversity before conception will affect adult progeny in rats.
        Dev Psychol. 2009; 45: 9-16
        • Li H.H.
        • Zhang L.
        • Fang Z.M.
        • Lin L.Y.
        • Wu C.R.
        • Huang Q.J.
        Behavioral and neurobiological studies on the male progeny of maternal rats exposed to chronic unpredictable stress before pregnancy.
        Neurosci Lett. 2010; 469: 278-282
        • Dietz D.M.
        • Laplant Q.
        • Watts E.L.
        • Hodes G.E.
        • Russo S.J.
        • Feng J.
        • et al.
        Paternal transmission of stress-induced pathologies.
        Biol Psychiatry. 2011; 70: 408-414
        • Yehuda R.
        • Engel S.M.
        • Brand S.R.
        • Seckl J.
        • Marcus S.M.
        • Berkowitz G.S.
        Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy.
        J Clin Endocrinol Metab. 2005; 90: 4115-4118
        • Franklin T.B.
        • Russig H.
        • Weiss I.C.
        • Graff J.
        • Linder N.
        • Michalon A.
        • et al.
        Epigenetic transmission of the impact of early stress across generations.
        Biol Psychiatry. 2010; 68: 408-415
        • Larauche M.
        • Gourcerol G.
        • Wang L.X.
        • Pambukchian K.
        • Brunnhuber S.
        • Adelson D.W.
        • et al.
        Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways.
        Am J Physiol Gastrointest Liver Physiol. 2009; 297: G215-G227
        • Ising M.
        • Zimmermann U.S.
        • Kunzel H.E.
        • Uhr M.
        • Foster A.C.
        • Learned-Coughlin S.M.
        • et al.
        High-affinity CRF1 receptor antagonist NBI-34041: Preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response.
        Neuropsychopharmacology. 2007; 32: 1941-1949
        • Aguilera G.
        • Nikodemova M.
        • Wynn P.C.
        • Catt K.J.
        Corticotropin releasing hormone receptors: Two decades later.
        Peptides. 2004; 25: 319-329
        • Wypior G.
        • Jeschke U.
        • Kurpisz M.
        • Szekeres-Bartho J.
        Expression of CRH, CRH-related peptide and CRH receptor in the ovary and potential CRH signalling pathways.
        J Reprod Immunol. 2011; 90: 67-73
        • Nappi R.E.
        • Rivest S.
        Stress-induced genetic expression of a selective corticotropin-releasing factor-receptor subtype within the rat ovaries: An effect dependent on the ovulatory cycle.
        Biol Reprod. 1995; 53: 1417-1428
        • Regev L.
        • Tsoory M.
        • Gil S.
        • Chen A.
        Site-specific genetic manipulation of amygdala corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge.
        Biol Psychiatry. 2012; 71: 317-326
        • Bohacek J.
        • Gapp K.
        • Saab B.J.
        • Mansuy I.M.
        Transgenerational epigenetic effects on brain functions.
        Biol Psychiatry. 2013; 73: 313-320
        • Tannenbaum B.
        • Tannenbaum G.S.
        • Sudom K.
        • Anisman H.
        Neurochemical and behavioral alterations elicited by a chronic intermittent stressor regimen: Implications for allostatic load.
        Brain Res. 2002; 953: 82-92
        • Zohar I.
        • Weinstock M.
        Differential effect of prenatal stress on the expression of corticotrophin-releasing hormone and its receptors in the hypothalamus and amygdala in male and female rats.
        J Neuroendocrinol. 2011; 23: 320-328
        • Gaisler-Salomon I.
        • Wang Y.
        • Chuhma N.
        • Zhang H.
        • Golumbic Y.N.
        • Mihali A.
        • et al.
        Synaptic underpinnings of altered hippocampal function in glutaminase-deficient mice during maturation.
        Hippocampus. 2012; 22: 1027-1039
        • Choleris E.
        • Thomas A.W.
        • Kavaliers M.
        • Prato F.S.
        A detailed ethological analysis of the mouse open field test: Effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field.
        Neurosci Biobehav Rev. 2001; 25: 235-260
        • Pellow S.
        • Chopin P.
        • File S.E.
        • Briley M.
        Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat.
        J Neurosci Methods. 1985; 14: 149-167
        • Davis M.
        The mammalian startle response.
        in: Eaton R.C. Neural Mechanisms of Startle Behavior. Plenum, New York1984: 287-351
        • Maren S.
        Neurobiology of Pavlovian fear conditioning.
        Annu Rev Neurosci. 2001; 24: 897-931
        • Brunson K.L.
        • Grigoriadis D.E.
        • Lorang M.T.
        • Baram T.Z.
        Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain.
        Exp Neurol. 2002; 176: 75-86
        • Kalantaridou S.N.
        • Makrigiannakis A.
        • Mastorakos G.
        • Chrousos G.P.
        Roles of reproductive corticotropin-releasing hormone.
        Ann N Y Acad Sci. 2003; 997: 129-135
        • Kiapekou E.
        • Zapanti E.
        • Mastorakos G.
        • Loutradis D.
        Update on the role of ovarian corticotropin-releasing hormone.
        Ann N Y Acad Sci. 2010; 1205: 225-229
        • Govorko D.
        • Bekdash R.A.
        • Zhang C.
        • Sarkar D.K.
        Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations.
        Biol Psychiatry. 72. 2012: 378-388
        • Jaenisch R.
        • Bird A.
        Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals.
        Nat Genet. 2003; 33: 245-254
        • Sterrenburg L.
        • Gaszner B.
        • Boerrigter J.
        • Santbergen L.
        • Bramini M.
        • Elliott E.
        • et al.
        Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat.
        PLoS One. 2011; 6: e28128
        • Curley J.P.
        • Mashoodh R.
        Parent-of-origin and trans-generational germline influences on behavioral development: The interacting roles of mothers, fathers, and grandparents.
        Dev Psychobiol. 2010; 52: 312-330
        • Huang Y.
        • Xu H.
        • Li H.
        • Yang H.
        • Chen Y.
        • Shi X.
        Pre-gestational stress reduces the ratio of 5-HIAA to 5-HT and the expression of 5-HT1A receptor and serotonin transporter in the brain of foetal rat.
        BMC Neurosci. 2012; 13: 22
        • Dell P.A.
        • Rose F.D.
        Transfer of effects from environmentally enriched and impoverished female rats to future offspring.
        Physiol Behav. 1987; 39: 187-190
        • Kalueff A.V.
        • Jensen C.L.
        • Murphy D.L.
        Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice.
        Brain Res. 2007; 1169: 87-97
        • Lapin I.
        • Khaunina R.
        • Mirzaev S.
        Vertical motor activity of mice is slowed by lower doses of psychotropic drugs than horizontal.
        Bull Exp Biol Med. 1995; 120: 385-387
        • Ericson E.
        • Samuelsson J.
        • Ahlenius S.
        Photocell measurements of rat motor activity. A contribution to sensitivity and variation in behavioral observations.
        J Pharmacol Methods. 1991; 25: 111-122
        • Prut L.
        • Belzung C.
        The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review.
        Eur J Pharmacol. 2003; 463: 3-33
        • Zhang G.
        • Shi G.
        • Tan H.
        • Kang Y.
        • Cui H.
        Intranasal administration of testosterone increased immobile-sniffing, exploratory behavior, motor behavior and grooming behavior in rats.
        Horm Behav. 2011; 59: 477-483
        • Kendig M.D.
        • Bowen M.T.
        • Kemp A.H.
        • McGregor I.S.
        Predatory threat induces huddling in adolescent rats and residual changes in early adulthood suggestive of increased resilience.
        Behav Brain Res. 2011; 225: 405-414
        • Meaney M.J.
        The development of individual differences in behavioral and endocrine responses to stress.
        Annu Rev Neurosci. 2001; 24: 1161-1192
        • Agrawal A.A.
        • Laforsch C.
        • Tollrian R.
        Transgenerational induction of defences in animals and plants.
        Nature. 1999; 401: 60-63
        • Groothuis T.G.G.
        • Muller W.
        • von Engelhardt N.
        • Carere C.
        • Eising C.
        Maternal hormones as a tool to adjust offspring phenotype in avian species.
        Neurosci Biobehav Rev. 2005; 29: 329-352
        • Cohen H.
        • Yehuda R.
        Gender differences in animal models of posttraumatic stress disorder.
        Dis Markers. 2011; 30: 141-150
        • Jacobson-Pick S.
        • Richter-Levin G.
        Differential impact of juvenile stress and corticosterone in juvenility and in adulthood, in male and female rats.
        Behav Brain Res. 2010; 214: 268-276
        • Ricon T.
        • Toth E.
        • Leshem M.
        • Braun K.
        • Richter-Levin G.
        Unpredictable chronic stress in juvenile or adult rats has opposite effects, respectively, promoting and impairing resilience.
        Stress. 2012; 15: 11-20