Advertisement

Immune System Dysregulation in First-Onset Postpartum Psychosis

Published:December 27, 2012DOI:https://doi.org/10.1016/j.biopsych.2012.11.006

      Background

      Accumulating evidence suggests that dysregulation of the immune system represents an important vulnerability factor for mood disorders. Postpartum psychosis (PP) is a severe mood disorder occurring within 4 weeks after delivery, a period of heightened immune responsiveness and an altered endocrine set point. Therefore, the aim of this study was to examine immune activation in patients with first-onset PP at the level of monocytes, T cells, and serum cytokines/chemokines.

      Methods

      We included 63 women admitted with first-onset PP. Control groups included healthy postpartum (n = 56) and nonpostpartum (n = 136) women. A quantitative-polymerase chain reaction monocyte gene expression analysis was performed with 43 genes previously identified as abnormally regulated in nonpostpartum mood disorder patients including the isoforms of the glucocorticoid receptor. Peripheral blood mononuclear cells percentages were measured by fluorescence-activated cell sorter analysis, whereas serum cytokines/chemokines were determined with a cytometric bead array.

      Results

      In healthy women, postpartum T cell levels were significantly elevated compared with nonpostpartum. Patients with PP failed to show the normal postpartum T cell elevation. In contrast, these patients showed a significant elevation of monocyte levels and a significant upregulation of several immune-related monocyte genes compared with control subjects postpartum and nonpostpartum. Furthermore, the glucocorticoid receptor α/β gene expression ratio was decreased in monocytes of PP patients, strongly correlating with their immune activation.

      Conclusions

      This study demonstrates a robust dysregulation of the immuno-neuro-endocrine set point in PP, with a notable over-activation of the monocyte/macrophage arm of the immune system.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Spinelli M.G.
        Postpartum psychosis: Detection of risk and management.
        Am J Psychiatry. 2009; 166: 405-408
        • Oates M.
        Perinatal psychiatric disorders: A leading cause of maternal morbidity and mortality.
        Br Med Bull. 2003; 67: 219-229
        • Chaudron L.H.
        • Pies R.W.
        The relationship between postpartum psychosis and bipolar disorder: A review.
        J Clin Psychiatry. 2003; 64: 1284-1292
        • Sharma V.
        • Smith A.
        • Khan M.
        The relationship between duration of labour, time of delivery, and puerperal psychosis.
        J Affect Disord. 2004; 83: 215-220
        • Bilszta J.L.
        • Meyer D.
        • Buist A.E.
        Bipolar affective disorder in the postnatal period: Investigating the role of sleep.
        Bipolar Disord. 2010; 12: 568-578
        • Bloch M.
        • Daly R.C.
        • Rubinow D.R.
        Endocrine factors in the etiology of postpartum depression.
        Compr Psychiatry. 2003; 44: 234-246
        • Payne J.L.
        • Palmer J.T.
        • Joffe H.
        A reproductive subtype of depression: Conceptualizing models and moving toward etiology.
        Harv Rev Psychiatry. 2009; 17: 72-86
        • Drexhage R.C.
        • Knijff E.M.
        • Padmos R.C.
        • Heul-Nieuwenhuijzen L.
        • Beumer W.
        • Versnel M.A.
        • et al.
        The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder.
        Expert Rev Neurother. 2010; 10: 59-76
        • Ortiz-Dominguez A.
        • Hernandez M.E.
        • Berlanga C.
        • Gutierrez-Mora D.
        • Moreno J.
        • Heinze G.
        • et al.
        Immune variations in bipolar disorder: Phasic differences.
        Bipolar Disord. 2007; 9: 596-602
        • Kauer-Sant’Anna M.
        • Kapczinski F.
        • Andreazza A.C.
        • Bond D.J.
        • Lam R.W.
        • Young L.T.
        • et al.
        Brain-derived neurotrophic factor and inflammatory markers in patients with early- vs. late-stage bipolar disorder.
        Int J Neuropsychopharmacol. 2009; 12: 447-458
        • Brietzke E.
        • Stertz L.
        • Fernandes B.S.
        • Kauer-Sant’anna M.
        • Mascarenhas M.
        • Escosteguy Vargas A.
        • et al.
        Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder.
        J Affect Disord. 2009; 116: 214-217
        • O’Brien S.M.
        • Scully P.
        • Scott L.V.
        • Dinan T.G.
        Cytokine profiles in bipolar affective disorder: Focus on acutely ill patients.
        J Affect Disord. 2006; 90: 263-267
        • Kim Y.K.
        • Myint A.M.
        • Lee B.H.
        • Han C.S.
        • Lee S.W.
        • Leonard B.E.
        • et al.
        T-helper types 1, 2, and 3 cytokine interactions in symptomatic manic patients.
        Psychiatry Res. 2004; 129: 267-272
        • Kim Y.K.
        • Suh I.B.
        • Kim H.
        • Han C.S.
        • Lim C.S.
        • Choi S.H.
        • et al.
        The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: Effects of psychotropic drugs.
        Mol Psychiatry. 2002; 7: 1107-1114
        • Padmos R.C.
        • Hillegers M.H.
        • Knijff E.M.
        • Vonk R.
        • Bouvy A.
        • Staal F.J.
        • et al.
        A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes.
        Arch Gen Psychiatry. 2008; 65: 395-407
        • Drexhage R.C.
        • van der Heul-Nieuwenhuijsen L.
        • Padmos R.C.
        • van Beveren N.
        • Cohen D.
        • Versnel M.A.
        • et al.
        Inflammatory gene expression in monocytes of patients with schizophrenia: Overlap and difference with bipolar disorder. A study in naturalistically treated patients.
        Int J Neuropsychopharmacol. 2010; 13: 1369-1381
        • Buyon J.P.
        The effects of pregnancy on autoimmune diseases.
        J Leukoc Biol. 1998; 63: 281-287
        • Weetman A.P.
        Immunity, thyroid function and pregnancy: Molecular mechanisms.
        Nat Rev Endocrinol. 2010; 6: 311-318
        • Haupl T.
        • Ostensen M.
        • Grutzkau A.
        • Burmester G.R.
        • Villiger P.M.
        Interaction between rheumatoid arthritis and pregnancy: Correlation of molecular data with clinical disease activity measures.
        Rheumatology (Oxford). 2008; 47: 19-22
        • Ruiz-Irastorza G.
        • Lima F.
        • Alves J.
        • Khamashta M.A.
        • Simpson J.
        • Hughes G.R.
        • et al.
        Increased rate of lupus flare during pregnancy and the puerperium: A prospective study of 78 pregnancies.
        Br J Rheumatol. 1996; 35: 133-138
        • Confavreux C.
        • Hutchinson M.
        • Hours M.M.
        • Cortinovis-Tourniaire P.
        • Moreau T.
        Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group.
        N Engl J Med. 1998; 339: 285-291
        • Schramm C.
        • Herkel J.
        • Beuers U.
        • Kanzler S.
        • Galle P.R.
        • Lohse A.W.
        Pregnancy in autoimmune hepatitis: Outcome and risk factors.
        Am J Gastroenterol. 2006; 101: 556-560
        • Sliwa K.
        • Fett J.
        • Elkayam U.
        Peripartum cardiomyopathy.
        Lancet. 2006; 368: 687-693
        • Calcagni E.
        • Elenkov I.
        Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases.
        Ann N Y Acad Sci. 2006; 1069: 62-76
        • Brockington I.
        Postpartum psychiatric disorders.
        Lancet. 2004; 363: 303-310
        • Steiner M.
        • Dunn E.
        • Born L.
        Hormones and mood: From menarche to menopause and beyond.
        J Affect Disord. 2003; 74: 67-83
        • Bergink V.
        • Kushner S.A.
        • Pop V.
        • Kuijpens H.
        • Lambregtse-van den Berg M.P.
        • Drexhage R.C.
        • et al.
        Prevalence of autoimmune thyroid dysfunction in postpartum psychosis.
        Br J Psychiatry. 2011; 198: 264-268
      1. First MBSR., Gibbon M, Williams JBW (1999): Structured Clinical Interview for DSM IV Axis I Disorders, Patient Edition (Nederlandse Versie). Lisse, Nederland: Swets and Zeitlinger, BV

        • Bergink V.
        • Lambregtse-van den Berg M.P.
        • Koorengevel K.M.
        • Kupka R.
        • Kushner S.A.
        First-onset psychosis occurring in the postpartum period: A prospective cohort study.
        J Clin Psychiatry. 2011; 72: 1531-1537
        • Knijff E.M.
        • Ruwhof C.
        • de Wit H.J.
        • Kupka R.W.
        • Vonk R.
        • Akkerhuis G.W.
        • et al.
        Monocyte-derived dendritic cells in bipolar disorder.
        Biol Psychiatry. 2006; 59: 317-326
        • Staal F.J.
        • Weerkamp F.
        • Baert M.R.
        • van den Burg C.M.
        • van Noort M.
        • de Haas E.F.
        • et al.
        Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion.
        J Immunol. 2004; 172: 1099-1108
        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative C(T) method.
        Nat Protoc. 2008; 3: 1101-1108
        • Drexhage R.C.
        • Hoogenboezem T.H.
        • Versnel M.A.
        • Berghout A.
        • Nolen W.A.
        • Drexhage H.A.
        The activation of monocyte and T cell networks in patients with bipolar disorder.
        Brain Behav Immun. 2011; 25: 1206-1213
        • Drexhage R.C.
        • Hoogenboezem T.A.
        • Cohen D.
        • Versnel M.A.
        • Nolen W.A.
        • van Beveren N.J.
        • et al.
        An activated set point of T cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces.
        Int J Neuropsychopharmacol. 2011; 14: 746-755
        • Weigelt K.
        • Carvalho L.A.
        • Drexhage R.C.
        • Wijkhuijs A.
        • de Wit H.
        • van Beveren N.J.
        • et al.
        TREM-1 and DAP12 expression in monocytes of patients with severe psychiatric disorders. EGR3, ATF3 and PU.1 as important transcription factors.
        Brain Behav Immun. 2011; 25: 1162-1169
        • Bergink V.
        • Kushner S.A.
        • Pop V.
        • Kuijpens H.
        • Lambregtse-van den Berg M.P.
        • Drexhage R.C.
        • et al.
        Prevalence of autoimmune thyroid dysfunction in postpartum psychosis.
        Br J Psychiatry. 2011; 198: 264-268
        • van der Heul-Nieuwenhuijsen L.
        • Padmos R.C.
        • Drexhage R.C.
        • de Wit H.
        • Berghout A.
        • Drexhage H.A.
        An inflammatory gene-expression fingerprint in monocytes of autoimmune thyroid disease patients.
        J Clin Endocrinol Metab. 2010; 95: 1962-1971
        • Wegienka G.
        • Havstad S.
        • Bobbitt K.R.
        • Woodcroft K.J.
        • Zoratti E.M.
        • Ownby D.R.
        • et al.
        Within-woman change in regulatory T cells from pregnancy to the postpartum period.
        J Reprod Immunol. 2011; 88: 58-65
        • Groer M.
        • El-Badri N.
        • Djeu J.
        • Harrington M.
        • Van Eepoel J.
        Suppression of natural killer cell cytotoxicity in postpartum women.
        Am J Reprod Immunol. 2010; 63: 209-213
        • Haupl T.
        • Ostensen M.
        • Grutzkau A.
        • Radbruch A.
        • Burmester G.R.
        • Villiger P.M.
        Reactivation of rheumatoid arthritis after pregnancy: Increased phagocyte and recurring lymphocyte gene activity.
        Arthritis Rheum. 2008; 58: 2981-2992
        • Shi X.
        • Li C.
        • Li Y.
        • Guan H.
        • Fan C.
        • Teng Y.
        • et al.
        Circulating lymphocyte subsets and regulatory T cells in patients with postpartum thyroiditis during the first postpartum year.
        Clin Exp Med. 2009; 9: 263-267
        • Langer-Gould A.
        • Gupta R.
        • Huang S.
        • Hagan A.
        • Atkuri K.
        • Leimpeter A.D.
        • et al.
        Interferon-gamma-producing T cells, pregnancy, and postpartum relapses of multiple sclerosis.
        Arch Neurol. 2010; 67: 51-57
        • Wong M.L.
        • Dong C.
        • Maestre-Mesa J.
        • Licinio J.
        Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response.
        Mol Psychiatry. 2008; 13: 800-812
        • Blume J.
        • Douglas S.D.
        • Evans D.L.
        Immune suppression and immune activation in depression.
        Brain Behav Immun. 2011; 25: 221-229
        • Moynihan J.A.
        • Santiago F.M.
        Brain behavior and immunity: Twenty years of T cells.
        Brain Behav Immun. 2007; 21: 872-880
        • Steiner J.
        • Jacobs R.
        • Panteli B.
        • Brauner M.
        • Schiltz K.
        • Bahn S.
        • et al.
        Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity.
        Eur Arch Psychiatry Clin Neurosci. 2010; 260: 509-518
        • Capuron L.
        • Miller A.H.
        Immune system to brain signaling: Neuropsychopharmacological implications.
        Pharmacol Ther. 2011; 130: 226-238
        • Kato T.A.
        • Monji A.
        • Mizoguchi Y.
        • Hashioka S.
        • Horikawa H.
        • Seki Y.
        • et al.
        Anti-inflammatory properties of antipsychotics via microglia modulations: Are antipsychotics a ‘fire extinguisher’ in the brain of schizophrenia?.
        Mini Rev Med Chem. 2011; 11: 565-574
        • Pollmacher T.
        • Haack M.
        • Schuld A.
        • Kraus T.
        • Hinze-Selch D.
        Effects of antipsychotic drugs on cytokine networks.
        J Psychiatr Res. 2000; 34: 369-382
        • Groer M.W.
        • Davis M.W.
        • Smith K.
        • Casey K.
        • Kramer V.
        • Bukovsky E.
        Immunity, inflammation and infection in post-partum breast and formula feeders.
        Am J Reprod Immunol. 2005; 54: 222-231
        • Fleming A.S.
        • Ruble D.
        • Krieger H.
        • Wong P.Y.
        Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers.
        Horm Behav. 1997; 31: 145-158
        • Altemus M.
        • Deuster P.A.
        • Galliven E.
        • Carter C.S.
        • Gold P.W.
        Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women.
        J Clin Endocrinol Metab. 1995; 80: 2954-2959
        • Magiakou M.A.
        • Mastorakos G.
        • Rabin D.
        • Dubbert B.
        • Gold P.W.
        • Chrousos G.P.
        Hypothalamic corticotropin-releasing hormone suppression during the postpartum period: Implications for the increase in psychiatric manifestations at this time.
        J Clin Endocrinol Metab. 1996; 81: 1912-1917
        • Parry B.L.
        • Sorenson D.L.
        • Meliska C.J.
        • Basavaraj N.
        • Zirpoli G.G.
        • Gamst A.
        • Hauger R.
        Hormonal basis of mood and postpartum disorders.
        Curr Womens Health Rep. 2003; 3: 230-235
        • Tsigos C.
        • Chrousos G.P.
        Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress.
        J Psychosom Res. 2002; 53: 865-871
        • Groer M.W.
        • Morgan K.
        Immune, health and endocrine characteristics of depressed postpartum mothers.
        Psychoneuroendocrinology. 2007; 32: 133-139
        • Tremblay M.E.
        • Stevens B.
        • Sierra A.
        • Wake H.
        • Bessis A.
        • Nimmerjahn A.
        The role of microglia in the healthy brain.
        J Neurosci. 2011; 31: 16064-16069
      2. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, et al. (2011): Neuroinflammation in schizophrenia especially focused on the role of microglia [published online ahead of print December 13]. Prog Neuropsychopharmacol Biol Psychiatry.

        • Chen S.K.
        • Tvrdik P.
        • Peden E.
        • Cho S.
        • Wu S.
        • Spangrude G.
        • et al.
        Hematopoietic origin of pathological grooming in Hoxb8 mutant mice.
        Cell. 2010; 141: 775-785
        • Derecki N.C.
        • Cronk J.C.
        • Lu Z.
        • Xu E.
        • Abbott S.B.
        • Guyenet P.G.
        • et al.
        Wild-type microglia arrest pathology in a mouse model of Rett syndrome.
        Nature. 2012; 484: 105-109