Advertisement

Rare Copy Number Variants in Tourette Syndrome Disrupt Genes in Histaminergic Pathways and Overlap with Autism

Published:December 15, 2011DOI:https://doi.org/10.1016/j.biopsych.2011.09.034

      Background

      Studies of copy number variation (CNV) have characterized loci and molecular pathways in a range of neuropsychiatric conditions. We analyzed rare CNVs in Tourette syndrome (TS) to identify novel risk regions and relevant pathways, to evaluate burden of structural variation in cases versus controls, and to assess overlap of identified variations with those in other neuropsychiatric syndromes.

      Methods

      We conducted a case-control study of 460 individuals with TS, including 148 parent-child trios and 1131 controls. CNV analysis was undertaken using 370 K to 1 M probe arrays, and genotyping data were used to match cases and controls for ancestry. CNVs present in < 1% of the population were evaluated.

      Results

      While there was no significant increase in the number of de novo or transmitted rare CNVs in cases versus controls, pathway analysis using multiple algorithms showed enrichment of genes within histamine receptor (subtypes 1 and 2) signaling pathways (p = 5.8 × 10−4 − 1.6 × 10−2), as well as axon guidance, cell adhesion, nervous system development, and synaptic structure and function processes. Genes mapping within rare CNVs in TS showed significant overlap with those previously identified in autism spectrum disorders but not intellectual disability or schizophrenia. Three large, likely pathogenic, de novo events were identified, including one disrupting multiple gamma-aminobutyric acid receptor genes.

      Conclusions

      We identify further evidence supporting recent findings regarding the involvement of histaminergic and gamma-aminobutyric acidergic mechanisms in the etiology of TS and show an overlap of rare CNVs in TS and autism spectrum disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Centers for Disease Control and Prevention
        Prevalence of diagnosed Tourette syndrome in persons aged 6–17 years—United States, 2007.
        MMWR Morb Mortal Wkly Rep. 2009; 58: 581-585
        • Robertson M.M.
        The prevalence and epidemiology of Gilles de la Tourette syndrome.
        J Psychosom Res. 2008; 65: 461-472
        • Robertson M.M.
        • Eapen V.
        • Cavanna A.E.
        The international prevalence, epidemiology, and clinical phenomenology of Tourette syndrome: A cross-cultural perspective.
        J Psychosom Res. 2009; 67: 475-483
        • Bloch M.
        • Peterson B.
        • Scahill L.
        • Otka J.
        • Katsovich L.
        • Zhang H.
        • Leckman J.F.
        Adulthood outcome of tic and obsessive-compulsive symptom severity in children with Tourette syndrome.
        Arch Pediatr Adolesc Med. 2006; 160: 65-69
        • Lin H.
        • Yeh C.
        • Peterson B.
        • Scahill L.
        • Grantz H.
        • Findley D.
        • et al.
        Assessment of symptom exacerbations in a longitudinal study of children with Tourette's syndrome or obsessive-compulsive disorder.
        J Am Acad Child Adolesc Psychiatry. 2002; 41: 1070-1077
        • Leckman J.
        • Zhang H.
        • Vitale A.
        • Lahnin F.
        • Lynch K.
        • Bondi C.
        • et al.
        Course of tic severity in Tourette syndrome: The first two decades.
        Pediatrics. 1998; 102: 14-19
        • Robertson M.
        • Banerjee S.
        • Kurlan R.
        • Cohen D.
        • Leckman J.
        • McMahon W.
        • et al.
        The Tourette syndrome diagnostic confidence index: Development and clinical associations.
        Neurology. 1999; 53: 2108-2112
        • Harris K.
        • Singer H.S.
        Tic disorders: Neural circuits, neurochemistry, and neuroimmunology.
        J Child Neurol. 2006; 21: 678-689
        • Singer H.S.
        Tourette's syndrome: From behaviour to biology.
        Lancet Neurol. 2005; 4: 149-159
        • Kataoka Y.
        • Kalanithi P.S.
        • Grantz H.
        • Schwartz M.L.
        • Saper C.
        • Leckman J.F.
        • Vaccarino F.M.
        Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome.
        J Comp Neurol. 2010; 518: 277-291
        • Kalanithi P.S.
        • Zheng W.
        • Kataoka Y.
        • DiFiglia M.
        • Grantz H.
        • Saper C.B.
        • et al.
        Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome.
        Proc Natl Acad Sci U S A. 2005; 102: 13307-13312
        • Pauls D.
        • Raymond C.
        • Stevenson J.
        • Leckman J.
        A family study of Gilles de la Tourette syndrome.
        Am J Hum Genet. 1991; 48: 154-163
        • Price R.
        • Kidd K.
        • Cohen D.
        • Pauls D.
        • Leckman J.
        A twin study of Tourette syndrome.
        Arch Gen Psychiatry. 1985; 42: 815-820
        • Walkup J.
        • Leckman J.
        • Price R.
        • Hardin M.
        • Ort S.
        • Cohen D.
        The relationship between obsessive-compulsive disorder and Tourette's syndrome: A twin study.
        Psychopharmacol Bull. 1988; 24: 375-379
        • Eapen V.
        • Pauls D.L.
        • Robertson M.M.
        Evidence for autosomal dominant transmission in Tourette's syndrome.
        Br J Psychiatry. 1993; 162: 593-596
        • Pauls D.L.
        • Leckman J.F.
        The inheritance of Gilles de la Tourette's syndrome and associated behaviors.
        N Engl J Med. 1986; 315: 993-997
        • State M.W.
        The genetics of child psychiatric disorders: Focus on autism and Tourette syndrome.
        Neuron. 2010; 68: 254-269
        • State M.W.
        The genetics of Tourette disorder.
        Curr Opin Genet Dev. 2011; 21: 302-309
        • Abelson J.F.
        • Kwan K.Y.
        • O'Roak B.J.
        • Baek D.Y.
        • Stillman A.A.
        • Morgan T.M.
        • et al.
        Sequence variants in SLITRK1 are associated with Tourette's syndrome.
        Science. 2005; 310: 317-320
        • Verkerk A.J.
        • Mathews C.A.
        • Joosse M.
        • Eussen B.H.
        • Heutink P.
        • Oostra B.A.
        • et al.
        CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder.
        Genomics. 2003; 82: 1-9
        • Lawson-Yuen A.
        • Saldivar J.S.
        • Sommer S.
        • Picker J.
        Familial deletion within NLGN4 associated with autism and Tourette syndrome.
        Eur J Hum Genet. 2008; 16: 614-618
        • Ercan-Sencicek A.
        • Stillman A.
        • Ghosh A.
        • Bilguvar K.
        • O'Roak B.
        • Mason C.
        • et al.
        L-histidine decarboxylase and Tourette's syndrome.
        N Engl J Med. 2010; 362: 1901-1908
        • Sebat J.
        • Lakshmi B.
        • Troge J.
        • Alexander J.
        • Young J.
        • Lundin P.
        • et al.
        Large-scale copy number polymorphism in the human genome.
        Science. 2004; 305: 525-528
        • Iafrate A.J.
        • Feuk L.
        • Rivera M.N.
        • Listewnik M.L.
        • Donahoe P.K.
        • Qi Y.
        • et al.
        Detection of large-scale variation in the human genome.
        Nat Genet. 2004; 36: 949-951
        • Conrad D.
        • Pinto D.
        • Redon R.
        • Feuk L.
        • Gokcumen O.
        • Zhang Y.
        • et al.
        Origins and functional impact of copy number variation in the human genome.
        Nature. 2009; 464: 704-712
        • Redon R.
        • Ishikawa S.
        • Fitch K.
        • Feuk L.
        • Perry G.
        • Andrews T.
        • et al.
        Global variation in copy number in the human genome.
        Nature. 2006; 444: 444-454
        • Stefansson H.
        • Rujescu D.
        • Cichon S.
        • Pietiläinen O.P.
        • Ingason A.
        • Steinberg S.
        • et al.
        Large recurrent microdeletions associated with schizophrenia.
        Nature. 2008; 455: 232-236
        • Walsh T.
        • McClellan J.
        • McCarthy S.
        • Addington A.
        • Pierce S.
        • Cooper G.
        • et al.
        Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia.
        Science. 2008; 320: 539-543
        • Wilson G.
        • Flibotte S.
        • Chopra V.
        • Melnyk B.
        • Honer W.
        • Holt R.
        DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling.
        Hum Mol Genet. 2006; 15: 743-749
        • Xu B.
        • Roos J.
        • Levy S.
        • van Rensburg E.
        • Gogos J.
        • Karayiorgou M.
        Strong association of de novo copy number mutations with sporadic schizophrenia.
        Nat Genet. 2008; 40: 880-885
        • Mulle J.G.
        • Dodd A.F.
        • McGrath J.A.
        • Wolyniec P.S.
        • Mitchell A.A.
        • Shetty A.C.
        • et al.
        Microdeletions of 3q29 confer high risk for schizophrenia.
        Am J Hum Genet. 2010; 87: 229-236
        • International Schizophrenia Consortium
        Rare chromosomal deletions and duplications increase risk of schizophrenia.
        Nature. 2008; 455: 237-241
        • McCarthy S.
        • Makarov V.
        • Kirov G.
        • Addington A.
        • McClellan J.
        • Yoon S.
        • et al.
        Microduplications of 16p11.2 are associated with schizophrenia.
        Nat Genet. 2009; 41: 1223-1227
        • Marshall C.
        • Noor A.
        • Vincent J.
        • Lionel A.
        • Feuk L.
        • Skaug J.
        • et al.
        Structural variation of chromosomes in autism spectrum disorder.
        Am J Hum Genet. 2008; 82: 477-488
        • Sebat J.
        • Lakshmi B.
        • Malhotra D.
        • Troge J.
        • Lese-Martin C.
        • Walsh T.
        • et al.
        Strong association of de novo copy number mutations with autism.
        Science. 2007; 316: 445-449
        • Szatmari P.
        • Paterson A.
        • Zwaigenbaum L.
        • Roberts W.
        • Brian J.
        • Liu X.
        • et al.
        Mapping autism risk loci using genetic linkage and chromosomal rearrangements.
        Nat Genet. 2007; 39: 319-328
        • Glessner J.
        • Wang K.
        • Cai G.
        • Korvatska O.
        • Kim C.
        • Wood S.
        • et al.
        Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.
        Nature. 2009; 459: 569-573
        • Sanders S.J.
        • Ercan-Sencicek A.G.
        • Hus V.
        • Luo R.
        • Murtha M.T.
        • Moreno-De-Luca D.
        • et al.
        Multiple recurrent de novo copy number variations (CNVs), including duplications of the 7q11.23 Williams-Buren syndrome region, are strongly associated with autism.
        Neuron. 2011; 70: 863-885
        • Weiss L.
        • Shen Y.
        • Korn J.
        • Arking D.
        • Miller D.
        • Fossdal R.
        • et al.
        Association between microdeletion and microduplication at 16p11.2 and autism.
        N Engl J Med. 2008; 358: 667-675
        • Guilmatre A.
        • Dubourg C.
        • Mosca A.
        • Legallic S.
        • Goldenberg A.
        • Drouin-Garraud V.
        • et al.
        Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation.
        Arch Gen Psychiatry. 2009; 66: 947-956
        • Vassos E.
        • Collier D.A.
        • Holden S.
        • Patch C.
        • Rujescu D.
        • St Clair D.
        • Lewis C.M.
        Penetrance for copy number variants associated with schizophrenia.
        Hum Mol Genet. 2010; 19: 3477-3481
        • Mefford H.C.
        • Muhle H.
        • Ostertag P.
        • von Spiczak S.
        • Buysse K.
        • Baker C.
        • et al.
        Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsies.
        PLoS Genet. 2010; 6: e1000962
        • Ikeda M.
        • Aleksic B.
        • Kirov G.
        • Kinoshita Y.
        • Yamanouchi Y.
        • Kitajima T.
        • et al.
        Copy number variation in schizophrenia in the Japanese population.
        Biol Psychiatry. 2010; 67: 283-286
        • Brunetti-Pierri N.
        • Berg J.S.
        • Scaglia F.
        • Belmont J.
        • Bacino C.A.
        • Sahoo T.
        • et al.
        Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities.
        Nat Genet. 2008; 40: 1466-1471
        • Kirov G.
        • Gumus D.
        • Chen W.
        • Norton N.
        • Georgieva L.
        • Sari M.
        • et al.
        Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia.
        Hum Mol Genet. 2008; 17: 458-465
        • Vrijenhoek T.
        • Buizer-Voskamp J.E.
        • van der Stelt I.
        • Strengman E.
        • Sabatti C.
        • et al.
        • Genetic Risk and Outcome in Psychosis (GROUP) Consortium
        Recurrent CNVs disrupt three candidate genes in schizophrenia patients.
        Am J Hum Genet. 2008; 83: 504-510
        • Gauthier J.
        • Champagne N.
        • Lafrenière R.G.
        • Xiong L.
        • Spiegelman D.
        • Brustein E.
        • et al.
        De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia.
        Proc Natl Acad Sci U S A. 2010; 107: 7863-7868
        • Sundaram S.
        • Huq A.
        • Wilson B.
        • Chugani H.
        Tourette syndrome is associated with recurrent exonic copy number variants.
        Neurology. 2010; 74: 1583-1590
        • Wellcome Trust Case Control Consortium
        Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
        Nature. 2007; 447: 661-678
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed. Text Revision. American Psychiatric Association, Washington, DC2000
        • Fischbach G.D.
        • Lord C.
        The Simons Simplex Collection: A resource for identification of autism genetic risk factors.
        Neuron. 2010; 68: 192-195
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Wang K.
        • Li M.
        • Hadley D.
        • Liu R.
        • Glessner J.
        • Grant S.
        • et al.
        PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.
        Genome Res. 2007; 17: 1665-1674
        • Colella S.
        • Yau C.
        • Taylor J.
        • Mirza G.
        • Butler H.
        • Clouston P.
        • et al.
        QuantiSNP: An Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data.
        Nucleic Acids Res. 2007; 35: 2013-2025
        • Pinto D.
        • Pagnamenta A.T.
        • Klei L.
        • Anney R.
        • Merico D.
        • Regan R.
        • et al.
        Functional impact of global rare copy number variation in autism spectrum disorders.
        Nature. 2010; 466: 368-372
        • Jia P.
        • Sun J.
        • Guo A.Y.
        • Zhao Z.
        SZGR: A comprehensive schizophrenia gene resource.
        Mol Psychiatry. 2010; 15: 453-462
        • Itsara A.
        • Wu H.
        • Smith J.D.
        • Nickerson D.A.
        • Romieu I.
        • London S.J.
        • Eichler E.E.
        De novo rates and selection of large copy number variation.
        Genome Res. 2010; 20: 1469-1481
        • Raychaudhuri S.
        • Korn J.M.
        • McCarroll S.A.
        • Altshuler D.
        • Sklar P.
        • et al.
        • International Schizophrenia Consortium
        Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function.
        PLoS Genet. 2010; 6: e1001097
        • Crossett A.
        • Kent B.P.
        • Klei L.
        • Ringquist S.
        • Trucco M.
        • Roeder K.
        • Devlin B.
        Using ancestry matching to combine family-based and unrelated samples for genome-wide association studies.
        Stat Med. 2010; 29: 2932-2945
        • Lee C.
        • Abdool A.
        • Huang C.H.
        PCA-based population structure inference with generic clustering algorithms.
        BMC Bioinformatics. 2009; 10: S73
        • Kirov G.
        • Grozeva D.
        • Norton N.
        • Ivanov D.
        • Mantripragada K.
        • Holmans P.
        • et al.
        Support for the involvement of large copy number variants in the pathogenesis of schizophrenia.
        Hum Mol Genet. 2009; 18: 1497-1503
        • Ferrada C.
        • Ferré S.
        • Casadó V.
        • Cortés A.
        • Justinova Z.
        • Barnes C.
        • et al.
        Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function.
        Neuropharmacology. 2008; 55: 190-197
        • Munzar P.
        • Tanda G.
        • Justinova Z.
        • Goldberg S.R.
        Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release.
        Neuropsychopharmacology. 2004; 29: 705-717
        • Haas H.L.
        • Sergeeva O.A.
        • Selbach O.
        Histamine in the nervous system.
        Physiol Rev. 2008; 88: 1183-1241
        • Kubota Y.
        • Ito C.
        • Sakurai E.
        • Watanabe T.
        • Ohtsu H.
        Increased methamphetamine-induced locomotor activity and behavioral sensitization in histamine-deficient mice.
        J Neurochem. 2002; 83: 837-845
        • Lebois E.P.
        • Jones C.K.
        • Lindsley C.W.
        The evolution of histamine Hantagonists/inverse agonists.
        Curr Top Med Chem. 2011; 11: 648-660
        • Brioni J.D.
        • Esbenshade T.A.
        • Garrison T.R.
        • Bitner S.R.
        • Cowart M.D.
        Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer's disease.
        J Pharmacol Exp Ther. 2011; 336: 38-46
        • Baron-Cohen S.
        • Mortimore C.
        • Moriarty J.
        • Izaguirre J.
        • Robertson M.
        The prevalence of Gilles de la Tourette's syndrome in children and adolescents with autism.
        J Child Psychol Psychiatry. 1999; 40: 213-218
        • Baron-Cohen S.
        • Scahill V.L.
        • Izaguirre J.
        • Hornsey H.
        • Robertson M.M.
        The prevalence of Gilles de la Tourette syndrome in children and adolescents with autism: A large scale study.
        Psychol Med. 1999; 29: 1151-1159
        • Burd L.
        • Li Q.
        • Kerbeshian J.
        • Klug M.G.
        • Freeman R.D.
        Tourette syndrome and comorbid pervasive developmental disorders.
        J Child Neurol. 2009; 24: 170-175
        • Stern J.S.
        • Robertson M.M.
        Tics associated with autistic and pervasive developmental disorders.
        Neurol Clin. 1997; 15: 345-355
        • Canitano R.
        • Vivanti G.
        Tics and Tourette syndrome in autism spectrum disorders.
        Autism. 2007; 11: 19-28
      1. State MW, Levitt P (in press): The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci.

        • Yang J.
        • Weedon M.N.
        • Purcell S.
        • Lettre G.
        • Estrada K.
        • Willer C.J.
        • et al.
        Genomic inflation factors under polygenic inheritance.
        Eur J Hum Genet. 2011; 19: 807-812
        • Clarke R.A.
        • Fang Z.M.
        • Diwan A.D.
        • Gilbert D.L.
        Tourette syndrome and klippel-feil anomaly in a child with chromosome 22q11 duplication.
        Case Report Med. 2009; 2009: 361518
        • Murphy K.C.
        • Jones L.A.
        • Owen M.J.
        High rates of schizophrenia in adults with velo-cardio-facial syndrome.
        Arch Gen Psychiatry. 1999; 56: 940-945
        • Yan W.
        • Jacobsen L.K.
        • Krasnewich D.M.
        • Guan X.Y.
        • Lenane M.C.
        • Paul S.P.
        • et al.
        Chromosome 22q11.2 interstitial deletions among childhood-onset schizophrenics and “multidimensionally impaired”.
        Am J Med Genet. 1998; 81: 41-43
        • Wang P.P.
        • Solot C.
        • Moss E.M.
        • Gerdes M.
        • McDonald-McGinn D.M.
        • Driscoll D.A.
        • et al.
        Developmental presentation of 22q11.2 deletion (DiGeorge/velocardiofacial syndrome).
        J Dev Behav Pediatr. 1998; 19: 342-345
        • Ou Z.
        • Berg J.S.
        • Yonath H.
        • Enciso V.B.
        • Miller D.T.
        • Picker J.
        • et al.
        Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes.
        Genet Med. 2008; 10: 267-277
        • Wentzel C.
        • Fernström M.
        • Ohrner Y.
        • Annerén G.
        • Thuresson A.C.
        Clinical variability of the 22q11.2 duplication syndrome.
        Eur J Med Genet. 2008; 51: 501-510
        • Portnoï M.F.
        Microduplication 22q11.2: A new chromosomal syndrome.
        Eur J Med Genet. 2009; 52: 88-93