Advertisement

A Diffusion Tensor Imaging Study of White Matter in Early-Onset Schizophrenia

  • Marinos Kyriakopoulos
    Affiliations
    Section of Neurobiology of Psychosis, Centre for Neuroimaging Sciences, King’s College London, Institute of Psychiatry, London, United Kingdom
    Search for articles by this author
  • Nora S. Vyas
    Affiliations
    Section of Neurobiology of Psychosis, Centre for Neuroimaging Sciences, King’s College London, Institute of Psychiatry, London, United Kingdom
    Search for articles by this author
  • Gareth J. Barker
    Affiliations
    Department of Clinical Neuroscience, Centre for Neuroimaging Sciences, King’s College London, Institute of Psychiatry, London, United Kingdom.
    Search for articles by this author
  • Xavier A. Chitnis
    Affiliations
    Department of Clinical Neuroscience, Centre for Neuroimaging Sciences, King’s College London, Institute of Psychiatry, London, United Kingdom.
    Search for articles by this author
  • Sophia Frangou
    Correspondence
    Address reprint requests to Sophia Frangou, M.D., M.R.C.Psych., Ph.D., Head, Section of Neurobiology of Psychosis, Institute of Psychiatry, P066, De Crespigny Park, London SE5 8AF, UK
    Affiliations
    Section of Neurobiology of Psychosis, Centre for Neuroimaging Sciences, King’s College London, Institute of Psychiatry, London, United Kingdom
    Search for articles by this author

      Background

      Voxel-based analysis of diffusion tensor magnetic resonance imaging (DTI) data was used to examine white matter integrity in adolescents with early-onset schizophrenia (EOS), defined as schizophrenia beginning before the 18th birthday.

      Methods

      Nineteen patients with EOS, aged 13 to 19, were compared with 20 healthy volunteers matched for age, gender, and parental socioeconomic status. Diffusion tensor magnetic resonance imaging data were acquired on a GE Signa NVi 1.5 Tesla system (General Electric, Milwaukee, Wisconsin). Maps of fractional anisotropy (FA) were registered into standard space, and group differences were examined using a nonparametric statistical approach.

      Results

      In comparison with healthy participants, EOS patients had significantly lower FA in the white matter of the parietal association cortex bilaterally and in the left middle cerebellar penduncle. No areas with significantly higher FA in patients were identified.

      Conclusions

      Parietal and cerebellar white matter abnormalities may contribute to the emergence of psychotic symptoms in adolescence.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benes F.M.
        Emerging principles of altered neural circuitry in schizophrenia.
        Brain Res Brain Res Rev. 2000; 31: 251-269
        • Shenton M.E.
        • Dickey C.C.
        • Frumin M.
        • McCarley R.W.
        A review of MRI findings in schizophrenia.
        Schizophr Res. 2001; 49: 1-52
        • Hof P.R.
        • Haroutunian V.
        • Friedrich Jr, V.L.
        • Byne W.
        • Buitron C.
        • Perl D.P.
        • Davies K.L.
        Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia.
        Biol Psychiatry. 2003; 53: 1075-1085
        • Harrison P.J.
        • Weinberger D.R.
        Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence.
        Mol Psychiatry. 2005; 10: 40-68
        • Kanaan R.A.
        • Kim J.S.
        • Kaufmann W.E.
        • Pearlson G.D.
        • Barker G.J.
        • McGuire P.K.
        Diffusion tensor imaging in schizophrenia.
        Biol Psychiatry. 2005; 58: 921-929
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 104: 8174-8179
        • Thompson P.M.
        • Vidal C.
        • Giedd J.N.
        • Gochman P.
        • Blumenthal J.
        • Nicolson R.
        • et al.
        Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 11650-11655
        • Kumra S.
        • Ashtari M.
        • McMeniman M.
        • Vogel J.
        • Augustin R.
        • Becker D.E.
        • et al.
        Reduced frontal white matter integrity in early-onset schizophrenia: A preliminary study.
        Biol Psychiatry. 2004; 55: 1138-1145
        • Kumra S.
        • Ashtari M.
        • Cervellione K.
        • Henderson I.
        • Kester H.
        • Roofeh D.
        • et al.
        White matter abnormalities in early-onset schizophrenia: A voxel-based diffusion tensor imaging study.
        J Am Acad Child Adolesc Psychiatry. 2005; 44: 937-941
        • White T.
        • Kendi A.T.
        • Lehericy S.
        • Kendi M.
        • Karatekin C.
        • Guimaraes A.
        • et al.
        Disruption of hippocampal connectivity in children and adolescents with schizophrenia–a voxel-based diffusion tensor imaging study.
        Schizophr Res. 2007; 90: 302-307
        • Tamminga C.A.
        • Vogel M.
        • Gao X.
        • Lahti A.C.
        • Holcomb H.H.
        The limbic cortex in schizophrenia: Focus on the anterior cingulate.
        Brain Res Brain Res Rev. 2000; 31: 364-370
        • Lipska B.K.
        • Weinberger D.R.
        A neurodevelopmental model of schizophrenia: Neonatal disconnection of the hippocampus.
        Neurotox Res. 2002; 4: 469-475
        • Pandya D.N.
        • Yeterian E.H.
        Architecture and connections of cortical association areas.
        in: Peters A. Jones E.G. Cerebral Cortex. Plenum Press, New York1985: 3-61
        • Wilkinson G.S.
        WRAT3 Administration Manual.
        Wide Range, Wilmington, Delaware1993
        • Office of Population Censuses and Surveys
        Standard Occupational Classification.
        Her Majesty’s Stationary Office, London1991
        • Annett M.
        A classification of hand preference by association analysis.
        Br J Psychol. 1970; 61: 303-321
        • First M.
        • Spitzer R.
        • Gibbon M.
        • Williams J.
        Structured Clinical Interview for DSM-IV-Axis Disorders-Patient Edition (SCID-I/P, Version 2.0).
        New York State Psychiatric Institute, New York1995
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The positive and negative syndrome scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Basser P.J.
        • Mattiello J.
        • LeBihan D.
        Estimation of the effective self-diffusion tensor from the NMR spin echo.
        J Magn Reson B. 1994; 103: 247-254
        • Good C.D.
        • Johnsrude I.S.
        • Ashburner J.
        • Henson R.N.
        • Friston K.J.
        • Frackowiak R.S.
        A voxel-based morphometric study of ageing in 465 normal adult human brains.
        Neuroimage. 2001; 14: 21-36
        • Bullmore E.T.
        • Suckling J.
        • Overmeyer S.
        • Rabe-Hesketh S.
        • Taylor E.
        • Brammer M.J.
        Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain.
        IEEE Trans Med Imaging. 1999; 18: 32-42
        • Ashburner J.
        • Friston K.J.
        Unified segmentation.
        Neuroimage. 2005; 26: 839-851
        • Bezchlibnyk-Butler K.Z.
        • Jeffries J.J.
        Clinical Handbook of Psychotropic Drugs.
        in: 10th ed. Hogrefe & Huber Publishers, Seattle2000: 84-88
        • Mori S.
        • Wanaka S.
        • Nagae-Poetscher L.M.
        • van Zijl P.C.M.
        MRI Atlas of Human White Matter.
        Elsevier Science, Amsterdam2005
        • Vourdas A.
        • Pipe R.
        • Corrigall R.
        • Frangou S.
        Increased developmental deviance and premorbid dysfunction in early onset schizophrenia.
        Schizophr Res. 2003; 62: 13-22
        • Danckert J.
        • Saoud M.
        • Maruff P.
        Attention, motor control and motor imagery in schizophrenia: Implications for the role of the parietal cortex.
        Schizophr Res. 2004; 70: 241-261
        • Blakemore S.J.
        • Frith C.
        Self-awareness and action.
        Curr Opin Neurobiol. 2003; 13: 219-224
        • Honea R.
        • Crow T.J.
        • Passingham D.
        • Mackay C.E.
        Regional deficits in brain volume in schizophrenia: A meta-analysis of voxel-based morphometry studies.
        Am J Psychiatry. 2005; 162: 2233-2245
        • Greenstein D.
        • Lerch J.
        • Shaw P.
        • Clasen L.
        • Giedd J.
        • Gochman P.
        • et al.
        Childhood onset schizophrenia: Cortical brain abnormalities as young adults.
        J Child Psychol Psychiatry. 2006; 47: 1003-1012
        • Schmahmann J.D.
        Dysmetria of thought: Clinical consequences of cerebellar dysfunction on cognition and affect.
        Trends Cogn Sci. 1998; 2: 362-371
        • Andreasen N.C.
        • Paradiso S.
        • O’Leary D.S.
        ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry?.
        Schizophr Bull. 1998; 24: 203-218
        • Wassink T.H.
        • Andreasen N.C.
        • Nopoulos P.
        • Flaum M.
        Cerebellar morphology as a predictor of symptom and psychosocial outcome in schizophrenia.
        Biol Psychiatry. 1999; 45: 41-48
        • Jacobsen L.K.
        • Giedd J.N.
        • Berquin P.C.
        • Krain A.L.
        • Hamburger S.D.
        • Kumra S.
        • Rapoport J.L.
        Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia.
        Am J Psychiatry. 1997; 154: 1663-1669
        • Goldstein J.M.
        • Goodman J.M.
        • Seidman L.J.
        • Kennedy D.N.
        • Makris N.
        • Lee H.
        • et al.
        Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging.
        Arch Gen Psychiatry. 1999; 56: 537-547
        • Buchanan R.W.
        • Francis A.
        • Arango C.
        • Miller K.
        • Lefkowitz D.M.
        • McMahon R.P.
        • et al.
        Morphometric assessment of the heteromodal association cortex in schizophrenia.
        Am J Psychiatry. 2004; 161: 322-331
        • Werry J.S.
        • McClellan J.M.
        • Andrews L.K.
        • Ham M.
        Clinical features and outcome of child and adolescent schizophrenia.
        Schizophr Bull. 1994; 20: 619-630
        • Drevets W.C.
        • Price J.L.
        • Simpson Jr, J.R.
        • Todd R.D.
        • Reich T.
        • Vannier M.
        • Raichle M.E.
        Subgenual prefrontal cortex abnormalities in mood disorders.
        Nature. 1997; 386: 824-827
        • Minami T.
        • Nobuhara K.
        • Okugawa G.
        • Takase K.
        • Yoshida T.
        • Sawada S.
        • et al.
        Diffusion tensor magnetic resonance imaging of disruption of regional white matter in schizophrenia.
        Neuropsychobiology. 2003; 47: 141-145
        • Okugawa G.
        • Nobuhara K.
        • Minami T.
        • Tamagaki C.
        • Takase K.
        • Sugimoto T.
        • et al.
        Subtle disruption of the middle cerebellar peduncles in patients with schizophrenia.
        Neuropsychobiology. 2004; 50: 119-123
        • Kuroki N.
        • Kubicki M.
        • Nestor P.G.
        • Salisbury D.F.
        • Park H.J.
        • Levitt J.J.
        • et al.
        Fornix integrity and hippocampal volume in male schizophrenic patients.
        Biol Psychiatry. 2006; 60: 22-31
        • Christensen J.
        • Holcomb J.
        • Garver D.L.
        State-related changes in cerebral white matter may underlie psychosis exacerbation.
        Psychiatry Res. 2004; 130: 71-78