Advertisement

Evolving Knowledge of Sex Differences in Brain Structure, Function, and Chemistry

  • Kelly P. Cosgrove
    Correspondence
    Address reprint requests to Kelly P. Cosgrove, Ph.D., Yale University School of Medicine and the VACHS, 950 Campbell Avenue/116A6, West Haven, CT 06516
    Affiliations
    Division of Psychiatry SPECT Imaging, Yale University School of Medicine and the Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut
    Search for articles by this author
  • Carolyn M. Mazure
    Affiliations
    Women’s Health Research at Yale, Yale University School of Medicine, New Haven, Connecticut.
    Search for articles by this author
  • Julie K. Staley
    Affiliations
    Division of Psychiatry SPECT Imaging, Yale University School of Medicine and the Veterans Affairs Connecticut Healthcare System, New Haven, Connecticut
    Search for articles by this author
      Clinical and epidemiologic evidence demonstrates sex differences in the prevalence and course of various psychiatric disorders. Understanding sex-specific brain differences in healthy individuals is a critical first step toward understanding sex-specific expression of psychiatric disorders. Here, we evaluate evidence on sex differences in brain structure, chemistry, and function using imaging methodologies, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and structural magnetic resonance imaging (MRI) in mentally healthy individuals. MEDLINE searches of English-language literature (1980–November 2006) using the terms sex, gender, PET, SPECT, MRI, fMRI, morphometry, neurochemistry, and neurotransmission were performed to extract relevant sources. The literature suggests that while there are many similarities in brain structure, function, and neurotransmission in healthy men and women, there are important differences that distinguish the male from the female brain. Overall, brain volume is greater in men than women; yet, when controlling for total volume, women have a higher percentage of gray matter and men a higher percentage of white matter. Regional volume differences are less consistent. Global cerebral blood flow is higher in women than in men. Sex-specific differences in dopaminergic, serotonergic, and gamma-aminobutyric acid (GABA)ergic markers indicate that male and female brains are neurochemically distinct. Insight into the etiology of sex differences in the normal living human brain provides an important foundation to delineate the pathophysiological mechanisms underlying sex differences in neuropsychiatric disorders and to guide the development of sex-specific treatments for these devastating brain disorders.

      Key Words

      To read this article in full you will need to make a payment
      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wizemann T.
        • Pardue M.-L.
        Exploring the Biological Contributions to Human Health. Does Sex Matter?.
        Institute of Medicine, Washington, DC2001
        • Arnold A.P.
        • Xu J.
        • Grisham W.
        • Chen X.
        • Kim Y.H.
        • Itoh Y.
        Minireview: Sex chromosomes and brain sexual differentiation.
        Endocrinology. 2004; 145: 1057-1062
        • Cahill L.
        Why sex matters for neuroscience.
        Nat Rev Neurosci. 2006; 7: 477-484
        • Birzniece V.
        • Backstrom T.
        • Johansson I.M.
        • Lindblad C.
        • Lundgren P.
        • Lofgren M.
        • et al.
        Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems.
        Brain Res Brain Res Rev. 2006; 51: 212-239
        • McEwen B.S.
        Invited review: Estrogens effects on the brain: Multiple sites and molecular mechanisms.
        J Appl Physiol. 2001; 91: 2785-2801
        • Lim K.
        • Rosenbloom M.
        • Pfefferbaum A.
        In vivo structural brain assessment.
        in: Bloom F. Kupfer D. Psychopharmacology: The Fourth Generation of Progress. Raven Press, Ltd, New York1995: 881-893
        • Malison R.
        • Laruelle M.
        • Innis R.
        Positron and single photon emission tomography.
        in: Bloom F. Kupfer D. Psychopharmacology: The Fourth Generation of Progress. Raven Press, Ltd, New York1995: 865-879
        • Allen J.
        • Damasio H.
        • Grabowski T.
        Normal neuroanatomical variation in the human brain: An MRI-volumetric study.
        Am J Phys Anthropol. 2002; 118: 341-358
        • Peters M.
        • Jancke L.
        • Staiger J.
        • Schlaug G.
        • Huang Y.
        • Steinmetz H.
        Unsolved problems in comparing brain sizes in Homo sapiens.
        Brain Cogn. 1998; 37: 254-285
        • Courchesne E.
        • Chizum H.
        • Townsend J.
        • Cowles A.
        • Covington J.
        • Egaas B.
        • et al.
        Normal brain development and aging: Quantitative analysis and in vivo MR imaging in healthy volunteers.
        Neuroradiology. 2000; 216: 672-682
        • Gur R.
        • Mozley P.
        • Resnick S.
        • Gottlieb G.
        • Kohn M.
        • Zimmerman R.
        • et al.
        Gender differences in age effect on brain atrophy measured by magnetic resonance imaging.
        Proc Natl Acad Sci U S A. 1991; 88: 2845-2849
        • Grant R.
        • Condon B.
        • Lawrence A.
        • Hadley D.
        • Patterson J.
        • Bone I.
        • et al.
        Human cranial CSF volumes measured by MRI: Sex and age influences.
        Magn Reson Imaging. 1987; 5: 465-468
        • Agartz I.
        • Saaf J.
        • Wahlund L.-O.
        • Wetterberg L.
        Quantitative estimations of cerebrospinal fluid spaces and brain regions in healthy controls using computer-assisted tissue classification of magnetic resonance images: Relation to age and sex.
        Magn Reson Imaging. 1992; 10: 217-226
        • Giedd J.N.
        • Castellanos F.X.
        • Rajapakse J.C.
        • Vaituzis A.C.
        • Rapoport J.L.
        Sexual dimorphism of the developing human brain.
        Prog Neuropsychopharmacol Biol Psychiatry. 1997; 21: 1185-1201
        • Gur R.
        • Turetsky B.
        • Matsui M.
        • Yan M.
        • Bilker W.
        • Hughett P.
        • et al.
        Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance.
        J Neurosci. 1999; 19: 4065-4072
        • Erdogan A.R.
        • Dane S.
        • Aydin M.D.
        • Ozdikici M.
        • Diyarbakirli S.
        Sex and handedness differences in size of cerebral ventricles of normal subjects.
        Int J Neurosci. 2004; 114: 67-73
        • Allen J.
        • Damasio H.
        • Grabowski T.
        • Bruss J.
        • Zhang W.
        Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum.
        Neuroimage. 2003; 18: 880-894
        • Paus T.
        • Otaky N.
        • Caramanos Z.
        • Macdonald D.
        • Zijdenbos A.
        • D’Avirro D.
        • et al.
        In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: Hemispheric asymmetries, gender differences and probability maps.
        J Comp Neurol. 1996; 376: 664-673
        • Goldstein J.
        • Seidman L.
        • Horton N.
        • Makris N.
        • Kennedy D.
        • Caviness V.
        • et al.
        Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging.
        Cereb Cortex. 2001; 11: 490-497
        • Haier R.
        • Jung R.
        • Yeo R.
        • Head K.
        • Alkire M.
        The neuroanatomy of general intelligence: Sex matters.
        Neuroimage. 2005; 25: 320-327
        • Nopoulos P.
        • Flaum M.
        • O’Leary D.
        • Andreasen N.C.
        Sexual dimorphism in the human brain: Evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging.
        Psychiatry Res. 2000; 98: 1-13
        • Carne R.P.
        • Vogrin S.
        • Litewka L.
        • Cook M.J.
        Cerebral cortex: An MRI-based study of volume and variance with age and sex.
        J Clin Neurosci. 2006; 13: 60-72
        • Sowell E.R.
        • Peterson B.S.
        • Kan E.
        • Woods R.P.
        • Yoshii J.
        • Bansal R.
        • et al.
        Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age.
        Cereb Cortex. 2006; (Epub ahead of print)
        • Blatter D.D.
        • Bigler E.D.
        • Gale S.D.
        • Johnson S.C.
        • Anderson C.V.
        • Burnett B.M.
        • et al.
        Quantitative volumetric analysis of brain MR: Normative database spanning 5 decades of life.
        AJNR Am J Neuroradiol. 1995; 16: 241-251
        • Good C.
        • Johnsrude I.
        • Ashburner J.
        • Henson R.
        • Friston K.
        • Frackowiak R.
        Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains.
        Neuroimage. 2001; 14: 685-700
        • Filipek P.A.
        • Richelme C.
        • Kennedy D.N.
        • Caviness Jr, V.S.
        The young adult human brain: An MRI-based morphometric analysis.
        Cereb Cortex. 1994; 4: 344-360
        • Van Der Werf Y.
        • Tisserand D.
        • Visser P.
        • Hofman P.
        • Vuurman E.
        • Uylings H.
        • et al.
        Thalamic volume predicts performance on tests of cognitive speed and decreases in healthy aging.
        Brain Res Cogn Brain Res. 2001; 11: 377-385
        • Sowell E.R.
        • Thompson P.M.
        • Toga A.W.
        Mapping changes in the human cortex throughout the span of life.
        Neuroscientist. 2004; 10: 372-392
        • Giedd J.N.
        Structural magnetic resonance imaging of the adolescent brain.
        Ann N Y Acad Sci. 2004; 1021: 77-85
        • Caviness Jr, V.S.
        • Kennedy D.N.
        • Richelme C.
        • Rademacher J.
        • Filipek P.A.
        The human brain age 7-11 years: A volumetric analysis based on magnetic resonance images.
        Cereb Cortex. 1996; 6: 726-736
        • Giedd J.N.
        • Vaituzis A.C.
        • Hamburger S.D.
        • Lange N.
        • Rajapakse J.C.
        • Kaysen D.
        • et al.
        Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4-18 years.
        J Comp Neurol. 1996; 366: 223-230
        • Hojo Y.
        • Hattori T.A.
        • Enami T.
        • Furukawa A.
        • Suzuki K.
        • Ishii H.T.
        • et al.
        Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons.
        Proc Natl Acad Sci U S A. 2004; 101: 865-870
        • Osterlund M.K.
        • Overstreet D.H.
        • Hurd Y.L.
        The flinders sensitive line rats, a genetic model of depression, show abnormal serotonin receptor mRNA expression in the brain that is reversed by 17beta-estradiol.
        Brain Res Mol Brain Res. 1999; 74: 158-166
        • Gundlah C.
        • Kohama S.G.
        • Mirkes S.J.
        • Garyfallou V.T.
        • Urbanski H.F.
        • Bethea C.L.
        Distribution of estrogen receptor beta (ERbeta) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: Continued expression with hormone replacement.
        Brain Res Mol Brain Res. 2000; 76: 191-204
        • Clark A.S.
        • MacLusky N.J.
        • Goldman-Rakic P.S.
        Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey.
        Endocrinology. 1988; 123: 932-940
        • Osterlund M.K.
        • Hurd Y.L.
        Estrogen receptors in the human forebrain and the relation to neuropsychiatric disorders.
        Prog Neurobiol. 2001; 64: 251-267
        • Murphy D.
        • DeCarli C.
        • McIntosh A.
        • Daly E.
        • Mentis M.
        • Pietrini P.
        • et al.
        Sex differences in human brain morphometry and metabolism: An in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging.
        Arch Gen Psychiatry. 1996; 53: 585-594
        • Good C.D.
        • Johnsrude I.S.
        • Ashburner J.
        • Henson R.N.
        • Friston K.J.
        • Frackowiak R.S.
        A voxel-based morphometric study of aging in 465 normal adult human brains.
        Neuroimage. 2001; 14: 21-36
        • Witelson S.F.
        • Beresh H.
        • Kigar D.L.
        Intelligence and brain size in 100 postmortem brains: Sex, lateralization and age factors.
        Brain. 2006; 129: 386-398
        • Devous M.
        • Stokely E.
        • Chehabi H.
        • Bonte F.
        Normal distribution of regional cerebral blood flow measured by dynamic single-photon emission tomography.
        J Cereb Blood Flow Metab. 1986; 6: 95-104
        • Gur R.
        • Gur R.
        • Obrist W.
        • Hungerbuhler J.
        • Younkin D.
        • Rosen A.
        • et al.
        Sex and handedness differences in cerebral blood flow during rest and cognitive activity.
        Science. 1982; 217: 659-661
        • Jones K.
        • Johnson K.
        • Becker J.
        • Spiers P.
        • Albert M.
        • Holman B.
        Use of singular value decomposition to characterize age and gender differences in SPECT cerebral perfusion.
        J Nucl Med. 1998; 39: 965-973
        • Slosman D.
        • Chicherio C.
        • Ludwig C.
        • Genton L.
        • Ribaupierre Sd.
        • Hans D.
        • et al.
        ΓXe SPECT cerebral blood flow study in a healthy population: Determination of T-scores.
        J Nucl Med. 2001; 42: 864-870
        • Esposito G.
        • Horn J.V.
        • Weinberger D.
        • Berman K.
        Gender differences in cerebral bloodflow as a function of cognitive state with PET.
        J Nucl Med. 1996; 37: 559-564
        • Podreka I.
        • Baumgartner C.
        • Suess E.
        • Muller C.
        • Brucke T.
        • Lang W.
        • et al.
        Quantification of regional cerebral blood flow with IMP-SPECT.
        Stroke. 1989; 20: 183-191
        • Baxter L.
        • Mazziotta J.
        • Phelps M.
        • Selin C.
        • Guze B.
        • Fairbanks L.
        Cerebral glucose metabolic rates in normal human females versus normal males.
        Psychiatry Res. 1987; 21: 237-245
        • Andreason P.
        • Zametkin A.
        • Guo A.
        • Baldwin P.
        • Cohen R.
        Gender-related differences in regional cerebral glucose metabolism in normal volunteers.
        Psychiatry Res. 1993; 51: 175-183
        • Hatazawa J.
        • Brooks R.
        • Di Chiro G.
        • Campbell G.
        Global cerebral glucose utilization is independent of brain size: A PET study.
        J Comput Assist Tomogr. 1987; 11: 571-576
        • Azari N.
        • Rapoport S.
        • Grady C.
        • DeCarli C.
        • Haxby J.
        • Schapiro M.
        • et al.
        Gender differences in correlations of cerebral glucose metabolic rates in young normal adults.
        Brain Res. 1992; 574: 198-208
        • Kuhl D.
        • Metter E.
        • Riege W.
        • Phelps M.
        Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method.
        J Cereb Blood Flow Metab. 1982; 2: 163-171
        • Yoshii F.
        • Barker W.
        • Chang J.
        • Loewenstein D.
        • Apicella A.
        • Smith D.
        • et al.
        Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors.
        J Cereb Blood Flow Metab. 1988; 8: 654-661
        • Reiman E.
        • Armstrong A.
        • Matt K.
        • Mattox J.
        The application of positron emission tomography to the study of the normal menstrual cycle.
        Hum Reprod. 1996; 11: 2799-2805
        • Maki P.M.
        • Resnick S.M.
        Longitudinal effects of estrogen replacement therapy on PET cerebral blood flow and cognition.
        Neurobiol Aging. 2000; 21: 373-383
        • Resnick S.M.
        • Maki P.M.
        • Golski S.
        • Kraut M.A.
        • Zonderman A.B.
        Effects of estrogen replacement therapy on PET cerebral blood flow and neuropsychological performance.
        Horm Behav. 1998; 34: 171-182
        • Staley J.
        • Sanacora G.
        • Tamagnan G.
        • Maclejewski P.
        • Malison R.T.
        • Berman R.M.
        • et al.
        Sex differences in diencephalon serotonin transporter availability in major depression.
        Biol Psychiatry. 2005; 59: 40-47
        • Goldstein J.M.
        • Jerram M.
        • Poldrack R.
        • Ahern T.
        • Kennedy D.N.
        • Seidman L.J.
        • et al.
        Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging.
        J Neurosci. 2005; 25: 9309-9316
        • Archer J.S.
        • Love-Geffen T.E.
        • Herbst-Damm K.L.
        • Swinney D.A.
        • Chang J.R.
        Effect of estradiol versus estradiol and testosterone on brain-activation patterns in postmenopausal women.
        Menopause. 2006; 13: 528-537
        • Halari R.
        • Kumari V.
        Comparable cortical activation with inferior performance in women during a novel cognitive inhibition task.
        Behav Brain Res. 2005; 158: 167-173
        • Halari R.
        • Hines M.
        • Kumari V.
        • Mehrotra R.
        • Wheeler M.
        • Ng V.
        • et al.
        Sex differences and individual differences in cognitive performance and their relationship to endogenous gonadal hormones and gonadotropins.
        Behav Neurosci. 2005; 119: 104-117
        • Frings L.
        • Wagner K.
        • Unterrainer J.
        • Spreer J.
        • Halsband U.
        • Schulze-Bonhage A.
        Gender-related differences in lateralization of hippocampal activation and cognitive strategy.
        Neuroreport. 2006; 17: 417-421
        • Bell E.C.
        • Willson M.C.
        • Wilman A.H.
        • Dave S.
        • Silverstone P.H.
        Males and females differ in brain activation during cognitive tasks.
        Neuroimage. 2006; 30: 529-538
        • Fink G.
        • Sumner B.E.
        • McQueen J.K.
        • Wilson H.
        • Rosie R.
        Sex steroid control of mood, mental state and memory.
        Clin Exp Pharmacol Physiol. 1998; 25: 764-775
        • Ortiz J.
        • Artigas F.
        • Gelpi E.
        Serotonergic status in human blood.
        Life Sci. 1988; 43: 983-990
        • Weiss L.A.
        • Abney M.
        • Cook Jr, E.H.
        • Ober C.
        Sex-specific genetic architecture of whole blood serotonin levels.
        Am J Hum Genet. 2005; 76: 33-41
        • Nishizawa S.
        • Benkelfat C.
        • Young S.
        • Leyton M.
        • Mzengeza S.
        • Montigny C.D.
        • et al.
        Differences between males and females in rates of serotonin synthesis in human brain.
        Proc Natl Acad Sci U S A. 1997; 94: 5308-5313
        • Kessler R.C.
        • McGonagle K.A.
        • Swartz M.
        • Blazer D.G.
        • Nelson C.B.
        Sex and depression in the National Comorbidity Survey.
        J Affect Disord. 1993; 29: 85-96
        • Staley J.
        • Krishnan-Sarin S.
        • Zoghbi S.
        • Tamagnan G.
        • Fujita M.
        • Seibyl J.
        • et al.
        Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers.
        Synapse. 2001; 41: 275-284
        • Kornstein S.G.
        • Schatzberg A.F.
        • Thase M.E.
        • Yonkers K.A.
        • McCullough J.P.
        • Keitner G.I.
        • et al.
        Gender differences in treatment response to sertraline versus imipramine in chronic depression.
        Am J Psychiatry. 2000; 157: 1445-1452
        • Rasgon N.L.
        • Dunkin J.
        • Fairbanks L.
        • Altshuler L.L.
        • Troung C.
        • Elman S.
        • et al.
        Estrogen and response to sertraline in postmenopausal women with major depressive disorder: A pilot study.
        J Psychiatr Res. 2007; 41: 338-343
        • Parsey R.
        • Oquendo M.
        • Simpson N.
        • Ogden R.
        • Heertum R.V.
        • Arango V.
        • et al.
        Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635.
        Brain Res. 2002; 954: 173-182
        • Arango V.
        • Underwood M.D.
        • Gubbi A.V.
        • Mann J.J.
        Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims.
        Brain Res. 1995; 688: 121-133
        • Palego L.
        • Marazziti D.
        • Rossi A.
        • Giannaccini G.
        • Naccarato A.G.
        • Lucacchini A.
        • et al.
        Apparent absence of aging and gender effects on serotonin 1A receptors in human neocortex and hippocampus.
        Brain Res. 1997; 758: 26-32
        • Biver F.
        • Lotstra F.
        • Monclus M.
        • Wikler D.
        • Damhaut P.
        • Mendlewicz J.
        • et al.
        Sex difference in 5HT2 receptor in the living human brain.
        Neurosci Lett. 1996; 204: 25-28
        • Adams K.
        • Pinborg L.
        • Svarer C.
        • Hasselbalch S.
        • Holm S.
        • Haugbol S.
        • et al.
        A database of [18F]-altanserin binding to 5-HT2A receptors in normal volunteers: Normative data and relationship to physiological and demographic variables.
        Neuroimage. 2004; 21: 1105-1113
        • Lewis R.
        • Kapur S.
        • Jone C.
        • DaSilva J.
        • Brown G.
        • Wilson A.
        • et al.
        Serotonin 5-HT2 receptors in schizophrenia: A PET study using [18F]setoperone in neuroleptic-naive patients and normal subjects.
        Am J Psychiatry. 1999; 156: 72-78
        • Moses E.
        • Drevets W.
        • Smith G.
        • Mathis C.
        • Kalro B.
        • Butters M.
        • et al.
        Effects of estradiol and progesterone administration on human serotonin 2A receptor binding: A PET study.
        Biol Psychiatry. 2000; 48: 854-860
        • Kugaya A.
        • Epperson C.
        • Zoghbi S.
        • Dyck Cv.
        • Hou Y.
        • Fujita M.
        • et al.
        Increase in prefrontal cortex serotonin2A receptors following estrogen treatment in postmenopausal women.
        Am J Psychiatry. 2003; 160: 1522-1524
        • Riccardi P.
        • Zald D.
        • Li R.
        • Park S.
        • Ansari M.S.
        • Dawant B.
        • et al.
        Sex differences in amphetamine-induced displacement of [(18)F]fallypride in striatal and extrastriatal regions: A PET study.
        Am J Psychiatry. 2006; 163: 1639-1641
        • Lavalaye J.
        • Booij J.
        • Reneman L.
        • Habraken J.
        • Royen E.V.
        Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers.
        Eur J Nucl Med. 2000; 27: 867-869
        • Mozley L.
        • Gur R.
        • Mozley P.
        • Gur R.
        Striatal dopamine transporters and cognitive functioning in healthy men and women.
        Am J Psychiatry. 2001; 158: 1492-1499
        • van Dyck C.
        • Seibyl J.
        • Malison R.
        • Laruelle M.
        • Wallace E.
        • Zoghbi S.
        • et al.
        Age-related decline in striatal dopamine transporter binding with iodine-123-beta-CIT SPECT.
        J Nucl Med. 1995; 36: 1175-1181
        • Best S.
        • Sarrel P.
        • Malison R.T.
        • Laruelle M.
        • Zoghbi S.S.
        • Baldwin R.M.
        • et al.
        Striatal dopamine transporter availability with [123I]β-CIT SPECT is unrelated to gender or menstrual cycle.
        Psychopharmacology. 2005; 183 (Berl): 181-189
        • Laakso A.
        • Vilkman H.
        • Bergman J.
        • Haaparanta M.
        • Solin O.
        • Syvalahti E.
        • et al.
        Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects.
        Biol Psychiatry. 2002; 52: 759-763
        • Pohjalainen T.
        • Rinne J.O.
        • Nagren K.
        • SyvAlahti E.
        • Hietala J.
        Sex differences in the striatal dopamine D2 receptor binding characteristics in vivo.
        Am J Psychiatry. 1998; 155: 768-773
        • Kaasinen V.
        • Nagren K.
        • Hietala J.
        • Farde L.
        • Rinne J.O.
        Sex differences in extrastriatal dopamine D2-like receptors in the human brain.
        Am J Psychiatry. 2001; 158: 308-311
        • Wong D.
        • Broussolle E.
        • Want G.
        • Villemagne V.
        • Dannals R.
        • Links J.
        • et al.
        In vivo measurement of dopamine receptors in human brain by positron emission tomography.
        Ann N Y Acad Sci. 1988; 515: 203-214
        • Nordstrom A.-L.
        • Olsson H.
        • Halldin C.
        A PET study of D2 dopamine receptor density at different phases of the menstrual cycle.
        Psychiatry Res. 1998; 83: 1-6
        • Walder D.J.
        • Seidman L.J.
        • Cullen N.
        • Su J.
        • Tsuang M.T.
        • Goldstein J.M.
        Sex differences in language dysfunction in schizophrenia.
        Am J Psychiatry. 2006; 163: 470-477
        • Aleman A.
        • Kahn R.S.
        • Selten J.P.
        Sex differences in the risk of schizophrenia: Evidence from meta-analysis.
        Arch Gen Psychiatry. 2003; 60: 565-571
        • Torgalsboen A.K.
        Full recovery from schizophrenia: The prognostic role of premorbid adjustment, symptoms at first admission, precipitating events and gender.
        Psychiatry Res. 1999; 88: 143-152
        • Rao M.L.
        • Kolsch H.
        Effects of estrogen on brain development and neuroprotection--implications for negative symptoms in schizophrenia.
        Psychoneuroendocrinology. 2003; 28: 83-96
        • Hafner H.
        • Riecher-Rossler A.
        • An Der Heiden W.
        • Maurer K.
        • Fatkenheuer B.
        • Loffler W.
        Generating and testing a causal explanation of the gender difference in age at first onset of schizophrenia.
        Psychol Med. 1993; 23: 925-940
        • Seeman M.V.
        Gender differences in schizophrenia.
        Can J Psychiatry. 1982; 27: 107-112
        • Seeman M.V.
        • Lang M.
        The role of estrogens in schizophrenia gender differences.
        Schizophr Bull. 1990; 16: 185-194
        • Kaasinen V.
        • Nurmi E.
        • Bruck A.
        • Eskola O.
        • Bergman J.
        • Solin O.
        • et al.
        Increased frontal [(18)F]fluorodopa uptake in early Parkinson’s disease: Sex differences in the prefrontal cortex.
        Brain. 2001; 124: 1125-1130
        • Lyons K.E.
        • Hubble J.P.
        • Troster A.I.
        • Pahwa R.
        • Koller W.C.
        Gender differences in Parkinson’s disease.
        Clin Neuropharmacol. 1998; 21: 118-121
        • Smith Y.R.
        • Minoshima S.
        • Kuhl D.E.
        • Zubieta J.K.
        Effects of long-term hormone therapy on cholinergic synaptic concentrations in healthy postmenopausal women.
        J Clin Endocrinol Metab. 2001; 86: 679-684
        • Yoshida T.
        • Kuwabara Y.
        • Sasaki M.
        • Fukumura T.
        • Ichimiya A.
        • Takita M.
        • et al.
        Sex-related differences in the muscarinic acetylcholinergic receptor in the healthy human brain--a positron emission tomography study.
        Ann Nucl Med. 2000; 14: 97-101
        • Sanacora G.
        • Mason G.F.
        • Rothman D.L.
        • Behar K.L.
        • Hyder F.
        • Petroff O.A.
        • et al.
        Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 1999; 56: 1043-1047
        • Epperson C.
        • Haga K.
        • Mason G.
        • Sellers E.
        • Gueorguieva R.
        • Zhang W.
        • et al.
        Cortical γ-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder.
        Arch Gen Psychiatry. 2002; 59: 851-858
        • Zubieta J.-K.
        • Dannals R.F.
        • Frost J.J.
        Gender and age influences on human brain mu-opioid receptor binding measured by PET.
        Am J Psychiatry. 1999; 156: 842-848
        • Smith Y.R.
        • Zubieta J.K.
        • del Carmen M.G.
        • Dannals R.F.
        • Ravert H.T.
        • Zacur H.A.
        • et al.
        Brain opioid receptor measurements by positron emission tomography in normal cycling women: Relationship to luteinizing hormone pulsatility and gonadal steroid hormones.
        J Clin Endocrinol Metab. 1998; 83: 4498-4505