Advertisement

Depression as a dynamical disease

      This paper is only available as a PDF. To read, Please Download here.
      Mathematical models are helpful in the understanding of diseases through the use of dynamical indicators. A previous study has shown that brain activity can be characterized by a decrease of dynamical complexity in depressive subjects. The present paper confirms and extends these conclusions through the use of recent methodological advances: first episode and recurrent patients strongly differ in their dynamical response to therapeutic interventions. These results emphasize the need for clinical follow-ups to avoid recurrence and the necessity of specific therapeutic intervention in the case of recurrent patients.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Albano AM
        • Rapp PE
        On the reliability of dynamical measures of EEG signals.
        in: Jansen BH Brandt ME Nonlinear Dynamical Analysis of the EEG. World Scientific, 1993: 117-139
        • Albano AM
        • Muench J
        • Schwartz C
        • Mees AI
        • Rapp PE
        Singular value decomposition and the Grassberger-Procaccia algorithm.
        Phys Rev. 1988; A38: 3017-3028
        • Ashton H
        • Golding JF
        • Marsh VR
        • Thompson JW
        • Hassanyeh F
        • Tyrer SP
        Cortical evoked potentials and clinical rating scales as measures of depressive illness.
        Psychol Med. 1988; 18: 305-317
        • Babloyantz A
        • Destexhe A
        Low-dimensional chaos in an instance of epilepsy.
        in: Proc Natl Acad Sci USA. 83. 1986: 3513-3517
        • Babloyantz A
        • Destexhe A
        The Creutzfeldt-Jacob disease in the hierarchy of chaotic attractors.
        in: Markus M Müller S Nicolis G From Chemical to Biological Organization. Springer-Verlag, Singapore1988: 307-316
        • Baribeau-Braun J
        • Picton TW
        • Gosselin J-Y
        Schizophrenia: A neurophysiological evaluation of abnormal information processing.
        Science. 1983; 219: 874-876
        • Barnard GA
        New methods of quality control.
        J R Stat Soc. 1963; B25: 255-258
        • Bentley JH
        Multidimensional binary search trees used for associative searching.
        Commun ACM. 1975; 18: 509-517
        • Bentley JH
        Multidimensional binary search trees in data base applications.
        IEEE Trans Softw Eng. 1979; 5: 333-340
        • Broomhead DS
        • King GP
        Extracting qualitative dynamics from experimental data.
        Physica. 1986; D20: 217-236
        • Casdagli M
        Nonlinear prediction of chaotic time series.
        Physica. 1989; D35: 335-356
        • Destexhe A
        • Sepulchre JA
        • Babloyantz A
        A comparative study of the experimental quantification of deterministic chaos.
        Phys Lett. 1988; A132: 101-106
        • Dvorak I
        Takens versus multichannel reconstruction in EEG correlation exponent estimates.
        Phys Lett. 1990; A151: 225-233
        • Elbert T
        • Ray WJ
        • Kowalik ZJ
        • Skinner JE
        • Graf KE
        • Birbaumer N
        Chaos and physiology: Deterministic chaos in excitable cell assemblies.
        Physiol Rev. 1994; 74: 1-47
        • El Massioui F
        • Lesèvre N
        Attention impairment and psychomotor retardation in depressed patients: An event-related study.
        Electroencephalogr Clin Neurophysiol. 1988; 70: 46-55
        • Farmer JD
        • Sidorowich JJ
        Predicting chaotic time series.
        Phys Rev Lett. 1987; 59: 845-848
        • Freeman WJ
        Tutorial on neurobiology: From single neurons to brain chaos.
        Int J Bifurcation Chaos. 1992; 2: 451-482
        • Freeman WJ
        Chaos in psychiatry.
        Biol Psychiatry. 1992; 31: 1079-1081
        • Glass L
        • Mackey MC
        Pathological conditions resulting from instabilities in physiological control systems.
        Ann NY Acad Sci. 1979; 316: 214-235
        • Globus GG
        • Arpaia JP
        Psychiatry and the new dynamics.
        Biol Psychiatry. 1994; 35: 352-364
        • Grassberger P
        Information content and predictability of lumped and distributed dynamical systems.
        Physica Scripta. 1989; 40: 346-353
        • Gratton G
        • Coles MGH
        • Donchin E
        A new method for off-line removal of ocular artifact.
        Electroencephalogr Clin Neurophysiol. 1983; 55: 468-484
        • Hamilton MA
        Rating scale of depression.
        J Neurol Neurosurg Psychiatry. 1960; 23: 56-62
        • Hollister LE
        • Davis KL
        • Davis BM
        Hormones in the treatment of psychiatric disorders.
        in: Kreiger DT Hughes JC Neuroendocrinology. Sinauer, Berlin1980: 167-175
        • Hope ACA
        A simplified Monte-Carlo significance test procedure.
        J R Stat Soc. 1968; B30: 582-598
        • Larson HJ
        Introduction to Probability Theory and Inference.
        Wiley, Sunderland, MA1982
        • Lorenz EN
        Dimension of weather and climate attractors.
        Nature. 1991; 353: 241-244
        • Mackey MC
        • Glass L
        Oscillation and chaos in physiological control systems.
        Science. 1977; 197: 287-289
        • Mackey MC
        • Milton JG
        Dynamical diseases.
        Ann NY Acad Sci. 1987; 504: 16-32
        • Mayer-Kress G
        • Kaneko K
        Spatiotemporal chaos and noise.
        J Stat Phys. 1989; 54: 1489-1508
        • Milton JG
        • Longtin A
        • Beuter A
        • Mackey MC
        • Glass L
        Complex dynamics and bifurcations in neurology.
        J Theor Biol. 1989; 138: 129-147
        • Montgomery SA
        • Asberg M
        A new depression scale designed to be sensitive to change.
        Br J Psychiatry. 1979; 134: 382-389
        • Morgera SD
        Information theoretic covariance complexity and its relation to pattern recognition.
        IEEE Trans Systems Man Cybern. 1985; 15: 608-619
        • Nandrino J-L
        • Pezard L
        • Martinerie J
        • El Massioui F
        • Renault B
        • Jouvent R
        • Allilaire J-F
        • Widlöcher D
        Decrease of complexity in EEG as a symptom of depression.
        Neuroreport. 1994; 5: 528-530
        • Palus M
        • Dvorak I
        • David I
        Remarks on spatial and temporal dynamics of EEG.
        in: Dvorak I Holden AV Mathematical Approaches to Brain Functioning Diagnostics. Manchester University Press, New York1991: 369-385
        • Pezard L
        • Martinerie J
        • Breton F
        • Renault B
        Nonlinear forecasting and correlation dimension of brain dynamics: A multichannel study.
        in: Proc 14th Ann Internat Conf IEEE-EMBS. vol 3. Piscataway IEEE Inc., New York1992: 979-981
        • Pezard L
        • Martinerie J
        • Breton F
        • Bourzeix J-C
        • Renault B
        Nonlinear forecasting measurements of multichannel EEG dynamics.
        Electroencephalogr, Clin Neurophysiol. 1994; 91: 383-391
        • Pijn JP
        • Van Neerven J
        • Noest A
        • Lopes da Silva FH
        Chaos or noise in EEG signals: Dependence on state and brain state.
        Electroencephalogr Clin Neurophysiol. 1991; 79: 371-381
        • Politi A
        • D'Alessandro G
        • Torcini A
        Fractal dimensions in coupled map lattices.
        in: Abraham NB Albano AM Passamante A Rapp PE Measures of Complexity and Chaos. Plenum, 1989: 409-424
        • Pool R
        Is it healthy to be chaotic?.
        Science. 1989; 243: 604-607
        • Prichard D
        • Theiler J
        Generating surrogate data for time series with several simultaneous measured variables.
        Phys Rev Lett. 1994; 73: 951-954
        • Pritchard WS
        • Duke DW
        Measuring chaos in the brain: A tutorial review of nonlinear dynamical EEG analysis.
        Int J Neurosci. 1992; 67: 31-80
        • Pritchard WS
        • Duke DW
        • Coburn KL
        • Moore NC
        • Tucker KA
        Altered EEG dynamical responsivity with Alzheimer's disease: Replication and extension.
        in: Jansen BH Brandt ME Nonlinear Dynamical Analysis of the EEG. World Scientific, New York1993: 165-168
        • Rapp PE
        • Albano AM
        • Schmah TI
        • Farwell LA
        Filtered noise can mimic low dimensional chaotic attractors.
        Phys Rev. 1993; 47E: 2289-2297
        • Rapp PE
        • Albano AM
        • Zimmerman ID
        • Jiménez-Montaño MA
        Phase-randomized surrogates can produce spurious identifications of non-random structure.
        Phys Lett. 1994; A192: 27-33
        • Redington D
        • Reidbord S
        Chaotic dynamics in autonomic nervous system activity of a patient during psychotherapy.
        Biol Psychiatry. 1992; 31: 993-1007
        • Röschke J
        • Aldenhoff JB
        Estimation of the dimensionality of sleep-EEG data in schizophrenics.
        Eur Arch Psychiatry Clin Neurosci. 1993; 242: 191-196
        • Schiff SJ
        • Jerger K
        • Duong DH
        • Chang T
        • Spano ML
        • Ditto WL
        Controlling chaos in the brain.
        Nature. 1994; 370: 615-620
        • Sugihara G
        • May RM
        Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.
        Nature. 1990; 344: 734-741
        • Theiler J
        • Galdrikian B
        • Longtin A
        • Eubank S
        • Farmer JD
        Using surrogate data to detect nonlinearity in time series.
        in: Casdagli M Eubank S Nonlinear Modeling and Forecasting. Addison-Wesley, Singapore1992: 163-188
        • Tsonis AA
        • Elsner JB
        Nonlinear prediction as a way of distinguishing chaos from random fractal sequences.
        Nature. 1992; 358: 217-220
        • Tyrer P
        • Owen RT
        • Cicchetti DV
        The brief scale for anxiety: A subdivision of the comprehensive psychopathological rating scale.
        J Neurol Neurosurg Psychiatry. 1984; 47: 970-975
        • Wales DJ
        Calculating the rate of loss of information from chaotic time series by forecasting.
        Nature. 1991; 350: 485-488
        • Wehr TA
        • Goodwin FK
        Rapid cycling in manic-depressives induced by tricyclic antidepressants.
        Arch Gen Psychiatry. 1979; 36: 555-559
        • Wehr TA
        • Goodwin FK
        • Wirz-Justice A
        • Craig C
        • Breitmeier J
        48-hour sleep-wake cycles in manic-depressive illness: Naturalistic observations and sleep deprivation experiments.
        Arch Gen Psychiatry. 1982; 39: 559-565
        • Widlöcher D
        Psychomotor retardation: Clinical, theoretical and psychometric aspects.
        in: Akiskal HS The Psychiatric Clinics of North America. Saunders, Reading, MA1983: 27-40
        • Widlöcher D
        Retardation: A basic emotional response?.
        in: Davis J Mass J The Affective Disorders. American Psychiatric Press, Philadelphia1983