Advertisement
Original article| Volume 34, ISSUE 1-2, P75-83, July 01, 1993

Lithium lengthens the period of circadian rhythms in lesioned hamsters bearing SCN grafts

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Lithium lengthens the free-running period of carcadian rhythms in a wide variety of organisms. The object of the present study was to examine the effects of lithium treatment on free-running activity rhythms in suprachiasmatic nuclei lesioned (SCN-X) hamsters that had recovered circadian rhythmicity following transplantation of fetal anterior hypothalamic grafts containing the suprachiasmatic nuclei (SCN). The animals were housed individually in cages equipped with running wheels, and locomotor activity was monitored using a computer-based data acquisition system. At the end of the behavioral tests, animals were anesthetized and perfused. Brain sections were immunostained for vasoactive intestinal peptide (VIP) and vasopressin-associated neurophysin (NP) to evaluate the extent of the lesion and the presence of a functional graft. In both intact and in SCN-X grafted animals, lithium lengthened the period of free running activity without affecting the amount of activity or the precision of the rhythm.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aguilar-Roblero R.A.
        • Morin L.P.
        • Moore R.Y.
        Is the fetal SCN sufficient to induce rhythm recovery when transplanted to SCN-lesioned hamsters?.
        Soc Neurosci Abstr. 1988; 14: 24.2
        • Al-Shamma H.A.
        • Devries G.J.
        Fiber outgrowth from fetal vasopressin neurons of the suprachiasmatic nucleus, bed nucleus of the stria terminalis and medial amygdaloid nucleus transplanted into adult Brattleboro rats.
        Dev Brain Res. 1991; 64: 200-204
        • Armstrong S.M.
        • Redman J.
        Melatonin administration: Effects on rodent circadian rhythms.
        Ciba Found Symp. 1985; 117: 188-207
        • Atkinson M.
        • Kripke D.F.
        • Wolf S.R.
        Autorhythmometry in manic-depressives.
        Chronobiologia. 1975; 2: 2-78
        • Avissar S.
        • Schreiber G.
        • Danon A.
        • Belmaker R.H.
        Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex.
        Nature. 1988; 331: 440-442
        • Berridge M.J.
        • Downes C.P.
        • Hanley M.R.
        Neural and developmental actions of lithium: A unifying hypothesis.
        Cell. 1989; 59: 411-419
        • Berridge M.L.
        • Downes C.P.
        • Hanley M.R.
        Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands.
        Biochem J. 1982; 206: 587-595
        • Bittman E.L.
        • Basil J.
        • Watt J.M.
        • Lehman M.N.
        Control of the period and phase of circadian rhythms restored by anatomically characterized suprachiasmatic grafts.
        Soc Res Bio Rhythms Abstr. 1990; 2: 72
        • Canbeyli R.
        • Lehman M.
        • Silver R.
        Tracing SCN graft efferents with DiI.
        Brain Res. 1991; 554: 15-21
        • Card J.P.
        • Moore R.Y.
        The suprachiasmatic nucleus of the golden hamster: Immunohistochemical analysis of cell and fiber distribution.
        Neuroscience. 1984; 13: 415-431
        • Cassone V.M.
        • Chesworth M.J.
        • Armstrong S.M.
        Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei.
        Physiol Behav. 1986; 36: 1111-1121
        • DeCoursey P.J.
        • Buggy J.
        Circadian rhythmicity after neural transplant to hamster third ventricle: Specificity of suprachiasmatic nuclei.
        Brain Res. 1989; 500: 263-275
        • Elliot J.A.
        Circadian rhythms and photoperiodic time measurement in mammals.
        in: Fed Proc Fed Am Soc Exp Biol. 35. 1976: 2339-2346
        • Eskes G.A.
        • Zucker I.
        Photoperiodic regulation of the hamster testis: Dependence on circadian rhythms.
        in: Proc Natl Acad Sci USA. 2. 1978: 104-108
        • Feinberg M.
        • Gillin J.C.
        • Carroll B.J.
        • Greden J.F.
        • Zis A.P.
        EEG studies of sleep in the diagnosis of depression.
        Biol Psychiatry. 1982; 17: 305-316
        • Fisher S.K.
        • Bartus R.T.
        Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain.
        J Neurochem. 1985; 45: 1085-1095
        • Forn J.
        • Valdecasas F.G.
        Effects of lithium on brain adenylate cyclase activity.
        Biochem Pharmacol. 1971; 20: 2773-2778
        • Gillin J.C.
        • Sitaram N.
        • Duncan W.C.
        • et al.
        Sleep disturbance in depression: Diagnostic potential and pathophysiology.
        Psychopharmacol Bull. 1980; 6: 40-42
        • Halberg F.
        Physiologic considerations underlying rhythmometry, with special reference to emotional illness.
        in: de Ajuriaguerra J. Cycles Biologiques et Psychiatrie, Symposium Bel-Air III. Mason, Paris1968: 73-126
        • Hallcher L.M.
        • Sherman W.R.
        The effects of lithium and other agents on the activity of myo-inositol-l-phosphatase from bovine brain.
        J Biol Chem. 1980; 255: 10896-10901
        • Hallonquist L.M.
        • Goldberg M.A.
        • Brandes J.S.
        Affective disorders and circadian rhythms.
        Can J Psychiatry. 1986; 3: 259-272
        • Han S.
        Lithium chloride changes sensitivity of hamster rhythm to light pulses.
        J Interdisciplin Cycle Res. 1984; 15: 139-145
        • Hoffman K.
        • Günderoth-Palmowski M.
        • Wiedenmann G.
        • Engelmann W.
        Further evidence for the lengthening effect of on circadian rhythms.
        Z Naturforsch. 1978; 33c: 231-234
        • Johnsson A.
        • Pflug B.
        • Engelmann W.
        • Klemke W.
        Effect of lithium carbonate on circadian periodicity in humans.
        Pharmacopsychiatry. 1979; 12: 423-425
        • Johnsson A.
        • Engelmann W.
        • Pflug B.
        • Klemke W.
        Period lengthening of human circadian rhythms by lithium carbonate, a prophylactic for depressive disorders.
        Int J Chronobiol. 1983; 8: 129-147
        • Kafka M.S.
        • WirgJustice A.
        • O;Donohue T.L.
        • Wehr T.
        Effects of lithium on circadian neurotransmitter receptor rhythms.
        Neuropsychobiology. 1982; 8: 41-50
        • Kanba S.
        • Pfenning M.
        • Kanba K.S.
        • Richelson E.
        Lithium ions have a potent and selective inhibitory effect on cyclic GMP formation stimulated by neurotensin, angiotensin II and bradykinin.
        Eur J Pharmacol. 1986; 126: 111-116
        • Kawamura H.
        • Nihonmatsu I.
        The suprachiasmatic nucleus as the circadian rhythm generator. Immunocytochemical identification of the suprachiasmatic nucleus within the transplanted hypothalamus.
        in: Hiroshige T. Honma K. Circadian Clocks and Zeitgebers. Hokkaido, 1985: 55-63
        • Kirk R.E.
        Experimental Design: Procedures for the behavioral sciences.
        in: Wadsworth, Belmont, CA1968: 268
        • Klemfuss H.
        • Kripke D.F.
        Potassium advances circadian activity rhythms: Interaction with lithium.
        Brain Res. 1989; 492: 300-304
        • Klemfuss H.
        • Bauer T.T.
        • Greene K.E.
        • Kripke D.F.
        Dietary calcium blocks lithium toxicity in hamster without affecting circadian rhythms.
        Biol Psychiatry. 1992; 31: 315-321
        • Klemfuss H.
        • Kylstra T.
        • Kripke D.F.
        • Brody
        Long tau in inositol deficient hamsters in increased by lithium.
        Abstr Soc Res Biol Rhythms. 1992; 3: 106
        • Kondo T.
        Removal by a trace of sodium of the period lengthening of the potassium uptake rhythm due to lithium in Lemma gibba G3.
        Plant Physiol. 1984; 75: 1071-1074
        • Kripke D.F.
        Phase-advance theories for affective illnesses.
        in: Wehr T.A. Goodwin F.K. Circadian Rhythms in Psychiatry. Boxwood, Pacific Grove, CA1983: 335-351
        • Kripke D.F.
        • Wyborney V.G.
        Lithium slows rat circadian activity rhythms.
        Life Sci. 1980; 26: 1319-1326
        • Kripke D.F.
        • Mullaney D.J.
        • Atkinson M.
        • Wolf S.
        Circadian rhythm disorders in manic-depressives.
        Biol Psychiatry. 1978; 13: 335-351
        • Kripke D.F.
        • Judd L.L.
        • Hubbard B.
        • Janowsky D.
        • Huey L.
        The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects.
        Biol Psychiatry. 1979; 14: 545-548
        • Kripke D.F.
        • Wyborney V.G.
        • McEachron D.L.
        Lithium slows rat activity levels.
        Chronobiologia. 1979; 6: 122
        • Kupker D.J.
        REM latency: A psychobiologic marker for primary depressive disease.
        Biol Psychiatry. 1976; 11: 159-175
        • Lehman M.N.
        • Silver R.
        • Gladstone W.R.
        • Kahn R.M.
        • Gibson M.
        • Bittman E.L.
        Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain.
        J Neurosci. 1987; 7: 1626-1638
        • Lehman M.N.
        • Silver R.
        • Bittman E.L.
        Anatomy of SCN grafts.
        in: Klein D. Moore R.Y. Reppert S.M. The Suprachiasmatic Nucleus: The Mind's Clock. Oxford University Press, New York1991: 349-374
        • Lohrenz F.N.
        • Fullerton D.T.
        • Wenzel F.J.
        • Chosy J.J.
        • Dickson K.B.
        • Reineke L.
        Circadian rhythm of adrenal cortical activity in depression.
        Behav Neuropsychiat. 1969; 1: 10-13
        • Maggi A.
        • Enna S.J.
        Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment.
        J Neurochem. 1980; 34: 888-892
        • Mason R.
        • Biello S.M.
        The effects of lithium on Syrian hamsters SCN neurons in vitro.
        Soc Res Biol Rhythms Abstr. 1992; 3: 30
        • McClure D.J.
        The diurnal variation of plasma cortisol levels in depression.
        J Psychosom Res. 1966; 10: 189-195
        • McEachron D.L.
        • Kripke D.F.
        • Hawkins R.
        • Haus R.
        • Pavlinac D.
        • Deftos L.
        Lithium delays biochemical circadian rhythms in rats.
        Neuropsychobiology. 1982; 8: 12-29
        • McEachron D.L.
        • Kirpke D.F.
        • Sharp F.
        • Lewy A.
        • McClellan D.
        Lithium effects on selected circadian rhythms in rats.
        Brain Res Bull. 1985; 15: 347-350
        • Meltzer H.L.
        Lithium mechanisms in bipolar illness and altered intracellular calcium functions.
        Biol Psychiatry. 1986; 21: 492-510
        • Meltzer H.L.
        Mode of action of lithium in affective disorders: An influence on intracellular calcium functions.
        Pharmacol Toxicol. 1990; 66: 84-99
        • Moore R.Y.
        Organization and function of a central nervous system circadian oscillator: The suprachiasmatic hypothalamic nucleus.
        in: Fed Proc. 42. 1983: 2783-2789
        • Mork A.
        • Geisler A.
        Mode of action of lithium on the catalytic unit of adenylate cyclase from rat brain.
        Pharmacol Toxicol. 1987; 60: 241-248
        • Nadakavukeren J.J.
        • Welsh D.K.
        • Reppert S.M.
        Aluminum fluoride reveals a phosphoionositide system within the suprachiasmatic region of the rat hypothalamus.
        Brain Res. 1990; 507: 181-188
        • Østgaard K.
        • Jensen A.
        • Johnsson A.
        Lithium ions lengthen the circadian period of growing cultures of the diatom Skeletonema costatum.
        Physiol Plant. 1982; 55: 285-288
        • Pittendrigh C.S.
        • Daan S.
        A functional analysis of circadian pacemakers in nocturnal rodents: The stability and lability of spontaneous frequency.
        J Comp Physiol. 1976; 106: 22-252
        • Pflug B.
        • Erikson R.
        • Johnsson A.
        Depression and daily temperature, a long-term study.
        Acta Psychiatr Scand. 1976; 54: 254-266
        • Possidente B.
        • Exner R.H.
        Gene-dependent effect of lithium on circadian rhythms in mice (Mus musculus).
        Chronobiol Int. 1986; 3: 17-21
        • Ragan C.I.
        • Watling K.J.
        • Gee N.S.
        • et al.
        The dephosphorylation of inositol 3,4 biphosphate to inositol in liver and brain involves two distinct Li-sensitive enzymes and proceeds via inositol-4-phosphate.
        Biochem J. 1988; 249: 143-148
        • Ralph M.R.
        • Foster R.G.
        • Davis F.C.
        • Menaker M.
        Transplanted suprachiasmatic nucleus determines circadian period.
        Science. 1990; 247: 975-978
        • Ralph M.R.
        • Hurd M.W.
        • Lehman M.N.
        Culture and transplantation of a mammalian clock: circadian chimeras produced from mixed tau genotypes.
        Soc Res Biol Rhythms Abstr. 1992; 3: 68
        • Redman J.
        • Armstrong S.M.
        • Ng K.T.
        Free-running activity rhythms in the rat: entrainment by melatonin.
        Science. 1983; 219: 1089-1091
        • Reghunandanan V.
        • Badgaiyan R.D.
        • Marya R.K.
        • Reghunandanan R.
        • Maini B.K.
        Lithium chloride SCN injection alters the circadian rhythm of food intake.
        Chronobiol Int. 1989; 6: 123-129
        • Rusak B.
        • Zucker I.
        Neural regulation of circadian rhythms.
        Physiol Behav. 1979; 59: 459-526
        • Schmid H.
        • Engelmann W.
        Effects of Li+, Rb+, and tetrathylammoniumchloride on the locomotor activity rhythm of Musca domestica.
        J Interdis Cycle Res. 1987; 18: 83-102
        • Seggie J.
        • Werstiuk E.S.
        • Grota L.
        Lithium and circadian patterns of melatonin in the retina, hypothalamus, pineal and serum.
        Prog Neuropharmacol Biol Psychiatry. 1987; 11: 325-334
        • Silver R.
        • Lehman M.N.
        • Gibson M.
        • Gladstone W.R.
        • Bittman E.L.
        Dispersed cell suspension of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamster.
        Brain Res. 1990; 525: 45-58
        • Sokolove P.G.
        • Bushell W.N.
        The chi square periodogram: Its utility for analysis of circadian rhythms.
        J Theor Biol. 1978; 72: 131-160
        • Sollars P.J.
        • Kimble D.P.
        Cross-species transplantation of fetal hypothalamic tissue restores circadian rhythm to SCN-lesioned host.
        Soc Neurosci Abstr. 1988; 14: 24.1
        • Souetre E.
        • Salvati Em Belugou J.L.
        • et al.
        Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality.
        Psychiatry Res. 1989; 28: 263-278
        • Treiser S.
        • Kellar K.J.
        Lithium effects on adrenergic receptor supersensitivity in rat brain.
        Eur J Pharmacol. 1979; 58: 85-86
        • Von Zerseen D.
        What is wrong with circadian clocks in depression?.
        in: Halaris A. Chronobiology and Psychiatric Disorders. Elsevier, New York1987: 159-179
        • Volonte C.
        • Racker E.
        Lithium stimulation of membrane-bound phospholipase C from PC12 cells exposed to nerve growth factor.
        J Neurochem. 1988; 51: 1163-1168
        • Wehr T.A.
        • Goodwin F.K.
        Desynchronization of circadian rhythms as a possible source of manic-depressive cycles.
        Psychopharmacol Bull. 1980; 16: 19-20
        • Wehr T.A.
        • Wirz-Justice A.
        • Lewy y A.J.
        • Goodwin F.K.
        Biological rhythm disturbances in affective illness.
        in: Biological Psychology Today. Vol. A. Elsevier, Amsterdam1979: 303-306
        • Wehr T.A.
        • Sack D.
        • Rosenthal N.
        • Duncan W.
        • Gillin J.C.
        Circadian rhythm disturbances in manic-depressive illness.
        in: Fed Proc. 42. 1983: 2809-2814
        • Welsh D.K.
        • Moore-Ede M.C.
        Lithium lengthens circadian period in a diurnal primate.
        Saimiri sciureus. Biol Psychiat. 1990; 28: 117-126
        • Wiegand S.J.
        • Gash D.M.
        Organization and efferent connections of transplanted suprachiasmatic nuclei.
        J Comp Neurol. 1988; 267: 562-579
        • Wirz-Justice A.
        • Wehr T.A.
        • Goodwin F.K.
        Antidepressant drugs slow circadian rhythms in behavior and brain neurotransmitter receptors.
        Psychopharmacol Bull. 1980; 16: 45-47
        • Woolum J.C.
        • Strumwasser F.
        Is the period of the circadian oscillator in the eye of Aplysia directly homeostatically regulated?.
        J Comp Physiol. 1983; 151: 253-269
        • Zucker I.
        • Fitzgerald K.M.
        • Morin L.P.
        Sex differentiation of the circadian system in the golden.
        J Comp Physiol. 1980; 238: R97-R101