Advertisement
Research Article| Volume 28, ISSUE 7, P595-602, October 01, 1990

Intercorrelations among monoamine metabolite concentrations in human lumbar CSF are not due to a shared acid transport system

  • Michael Jibson
    Affiliations
    From the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA

    Palo Alto VA Medical Center, Palo Alto, CA, USA
    Search for articles by this author
  • Kym F. Faull
    Affiliations
    From the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
    Search for articles by this author
  • John G. Csernansky
    Correspondence
    Address reprint requests to Dr. Csernansky, Department of Psychiatry, Washington University Medical School, 4940 Audubon Avenue, St. Louis, MO 63110, USA
    Affiliations
    From the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA

    Palo Alto VA Medical Center, Palo Alto, CA, USA
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Intercorrelations among homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-hydroxy-phenylglycol (MHPG) concentrations in lumbar cerebrospinal fluid (CSF) were examined before and after blockade of the acid transport system by probenecid in 59 psychiatric inpatients. The three compounds remained intercorrelated despite acid transport blockade, suggesting that the common transport system does not account for their covariance. Other possibilities to explain the interrelationship among these compounds are discussed.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agren H.
        • Mefford I.N.
        • Rudorfer M.V.
        • Linnoila M.
        • Potter W.Z.
        Interacting neurotransmitter systems. A non-experimental approach to the 5HIAA-HVA correlation in human CSF.
        J Psychiatry Res. 1986; 3: 175-193
        • Asberg M.
        • Bertilsson L.
        • Tuck D.
        • Cronholm B.
        • Sjoqvist F.
        Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline.
        Clin Pharmacol Ther. 1973; 14: 277-286
        • Berger P.A.
        • Faull K.F.
        • Kilkowski J.
        • et al.
        CSF monoamine metabolites in depression and schizophrenia.
        Am J Psychiatry. 1980; 137: 174-180
        • Bowers Jr, M.B.
        Clinical measurements of central dopamine and 5-hydroxytryptamine metabolism: Reliability and interpretation of cerebrospinal fluid acid monoamine metabolite measures.
        Neuropharmacology. 1972; 11: 101-111
        • Cowdry R.W.
        • Ebert M.H.
        • van Kammen D.P.
        • Post R.M.
        • Goodwin F.K.
        Cerebrospinal fluid probenecid studies: A reinterpretation.
        Biol Psychiatry. 1983; 18: 1287-1299
        • Davis K.L.
        • Davidson M.
        • Mohs R.C.
        • et al.
        Plasma homovanillic acid concentration and the severity of schizophrenic illness.
        Science. 1985; 227: 1601-1602
        • Ebert M.H.
        • Kartzinel R.
        • Cowdry R.W.
        • Goodwin R.K.
        Cerebrospinal fluid metabolites and the probenecid test.
        in: Neurobiology of Cerebrospinal Fluid. Vol. 1. Plenum Press, New York1980: 97-112
        • Faull K.F.
        • Anderson P.J.
        • Barchas J.D.
        • Berger P.A.
        Selected ion monitoring assay for biogenic amine metabolites and probenecid in human lumbar cerebrospinal fluid.
        J Chromatogr. 1979; 163: 337-349
        • Faull K.F.
        • Barchas J.D.
        • Foutz A.S.
        • Dement W.C.
        • Holman R.B.
        Monoamine metabolite concentrations in the cerebrospinal fluid of normal and narcoleptic dogs.
        Brain Res. 1982; 242: 137-143
        • Faull K.F.
        • DoAmaral J.R.
        • Barchas J.D.
        A selected ion monitoring assay for probenecid.
        Biomed Mass Spectrometry. 1978; 5: 317-320
        • Faull K.F.
        • King R.J.
        • Berger P.A.
        • Barchas J.D.
        Systems theory as a tool for functional interactions among biogenic amines.
        in: Usdin E. Carlsson A. Dahlstrom A. Engel J. Catecholamines: Neuropharmacology and Central Nervous System-Therapeutic Aspects. Alan R. Liss, Inc, New York1984
        • Faull K.F.
        • Kraemer H.C.
        • Barchas J.D.
        • Berger P.A.
        Clinical application of the probenecid test for measurement of monoamine turnover in the CNS.
        Biol Psychiatry. 1981; 16: 879-899
        • Forn J.
        Active transport of 5-hydroxyindoleacetic acid by the rabbit choroid plexus in vitro: Blockade by probenecid and metabolic inhibitors.
        Biochem Pharmacol. 1972; 21: 619-624
        • Freedman D.A.
        As others see us: A case study in path analysis.
        J Educ Stat. 1987; 12: 101-128
        • Gerner R.H.
        • Fairbanks L.K.
        • Anderson G.M.
        • et al.
        CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls.
        Am J Psychiatry. 1984; 141: 1533-1540
        • Goetz K.L.
        • Kammen D.P.
        Computerized axial tomography scans and subtypes of schizophrenia: A review of the literature.
        J Nerv Ment Dis. 1986; 174: 31-41
        • Gordon E.K.
        • Oliver J.
        • Goodwin F.K.
        • Chase T.N.
        • Post R.M.
        Effect of probenecid on free 3-methoxy-4-hydroxyphenylglycol (MHPG) and its sulfate in human cerebrospinal fluid.
        Neuropharmacology. 1973; 12: 391-396
        • Houston J.P.
        • Maas J.W.
        • Bowden C.L.
        • Contreras S.A.
        • McIntyre K.L.
        • Javors M.A.
        Cerebrospinal fluid HVA, central brain atrophy, and clinical state in schizophrenia.
        Psychiatry Res. 1986; 19: 207-214
        • Hsaio J.K.
        • Agren H.
        • Barkto J.J.
        • Rudorfer M.V.
        • Linnoila M.
        • Potter W.Z.
        Monoamine neurotransmitter interactions and the prediction of antidepressant response.
        Arch Gen Psychiatry. 1987; 44: 1078-1083
        • Kopin I.J.
        Catecholamine metabolism: Basic aspects and clinical significance.
        Pharmacol Rev. 1985; 37: 333-364
        • Koslow S.H.
        • Maas J.W.
        • Bowden C.L.
        • Davis J.M.
        • Hanin I.
        • Javaid J.
        CSF and urinary biogenic amines and metabolites in depression and mania: A controlled, univariate analysis.
        Arch Gen Psychiatry. 1983; 40: 999-1010
        • Losonczy M.F.
        • Davidson M.
        • Davis K.L.
        The dopamine hypothesis of schizophrenia.
        in: Meltzer H.Y. Psychopharmacology: The Third Generation of Progress. Raven Press, New York1987: 715-726
        • Losonczy M.F.
        • Song I.S.
        • Mohs R.C.
        • et al.
        Correlates of lateral ventricular size in chronic schizophrenia, II: Biological measures.
        Am J Psychiatry. 1986; 143: 1113-1118
        • Meltzer H.Y.
        • Lowy M.T.
        The serotonin hypothesis of depression.
        in: Meltzer H.Y. Psychopharmacology: The Third Generation of Progress. Raven Press, New York1987: 513-526
        • Nyback H.
        • Berggren B-M.
        • Hindmarsh T.
        • Sedvall G.
        • Weisel F.-A.
        Cerebroventricular size and cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy volunteers.
        Psychiatry Res. 1983; 9: 301-308
        • Peabody C.A.
        • Faull K.F.
        • King R.J.
        • Whiteford H.A.
        • Barchas J.D.
        • Berger P.A.
        CSF amine metabolites and depression.
        Psychiatry Res. 1987; 21: 1-7
        • Potkin S.G.
        • Weinberger D.L.
        • Linnoila M.
        • Wyatt R.J.
        Low CSF 5-hydroxyindoleacetic acid in schizophrenic patients with enlarged cerebral ventricles.
        Am J Psychiatr. 1983; 140: 21-25
        • Potter W.Z.
        • Rudorfer M.V.
        • Pickar D.
        • Linnoila M.
        Effects of psychotropic drugs on neurotransmitters in man.
        Life Sci. 1987; 41: 817-820
        • Risby E.D.
        • Hsaio I.K.
        • Sunderland T.
        • Agren H.
        • Rudorfer M.V.
        • Potter W.Z.
        The effects of antidepressants on the cerebrospinal fluid homovanillic acid/5-hydroxyindoleacetic acid ratio.
        Clin Pharmacol Ther. 1987; 42: 547-554
        • Roy A.
        • Adinoff B.
        • Roehrich L.
        • et al.
        Pathological gambling: A psychobiological study.
        Arch Gen Psychiatry. 1988; 45: 369-373
        • Scheinin M.
        Monoamine metabolites in human cerebrospinal fluid: Indicators of neuronal activity?.
        Med Biol. 1985; 63: 1-17
        • Sedvall G.C.
        • Wode-Helgodt B.
        Aberrant monoamine metabolite levels in CSF and family history of schizophrenia.
        Arch Gen Psychiatry. 1980; 37: 1113-1116
        • Siever L.J.
        Role of noradrenergic mechanisms in the etiology of the affective disorders.
        in: Meltzer H.Y. Psychopharmacology: The Third Generation of Progress. Raven Press, New York1987: 493-504
        • Traskman L.
        • Asberg M.
        • Bertilsson L.
        • et al.
        Plasma levels of chlorimipramine and its demethyl metabolite during treatment of depression.
        Clin Pharmacol Ther. 1979; 26: 600-610
        • van Kammen D.P.
        • Mann L.S.
        • Sternberg D.E.
        • et al.
        Dopamine-B-hydroxylase activity and homovanillic acid in spinal fluid of schizophrenics with brain atrophy.
        Science. 1983; 220: 974-977
        • van Praag H.M.
        Amine hypothesis of affective disorders.
        in: Handbook of Psychopharmacology. Vol 13. Plenum Press, New York1978: 187-297
        • Wode-Helgodt B.
        • Fyro B.
        • Gullberg B.
        • Sedvall G.
        Effect of chlorpromazine treatment on monoamine metabolite levels in cerebrospinal fluid of psychotic patients.
        Acta Psychitr Scand. 1977; 56: 129-142
        • Wolfson L.I.
        • Escriva A.
        Clearance of 3-methoxy-4-hydroxyphenolglycol from the cerebrospinal fluid.
        Neurology. 1976; 26: 781-784
        • Wood J.H.
        Sites of origin and cerebrospinal fluid concentration gradients: Neurotransmitters, their precursors and metabolites, and cyclic nucleotides.
        in: Neurobiology of Cerebrospinal Fluid. Vol 1. Plenum Press, New York1980: 53-62