Advertisement
Review| Volume 20, ISSUE 7, P764-784, July 1985

Animal models of depression: Parallels and correlates to severe depression in humans

  • James A. Jesberger
    Footnotes
    Affiliations
    Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
    Search for articles by this author
  • J.Steven Richardson
    Correspondence
    Address reprint requests to Dr. J. Steven Richardson, Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
    Footnotes
    Affiliations
    Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
    Search for articles by this author
  • Author Footnotes
    1 The authors wish to thank Jackie Bitz and Margaret Matheson for secretarial assistance in preparing this manuscript.
      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Drugs with antidepressant properties in patients with severe depression also have various behavioral and neurochemical effects in animals. This has given rise to numerous animal models that have been suggested to be valid for research into the neurobiology of depression and the neurochemical mechanisms of the antidepressant drugs. However, considerable evidence from many avenues of research indicates that severe depression is a biochemical disorder that develops in those individuals with some predisposing neurochemical vulnerability. Although the predisposing biochemical abnormality has not been identified, it may be related to the neurochemical mechanisms that regulate impulse traffic in various neural systems and maintain the homeostatic balance of neural activity within the brain. Therefore, the appropriate animal model for severe depression should have some disruption of neural functioning that is returned to normal by the chronic administration of antidepressant drugs. Of the numerous animal models of depression that have been presented in the literature, only the rat with olfactory bulb lesions meets this requirement. The behavioral and endocrine abnormalities induced by the olfactory bulb lesions are reversed by chronic (but not acute) treatment with antidepressants of various classes. Of the existing animal models of severe depression, the olfactory bulbectomy model holds the most promise for elucidating the neurobiology of depression and the neurochemistry of antidepressant drugs.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adamec R.E.
        • Stark-Adamec C.
        Limbic kindling and animal behavior: Implications for human psychopathology associated with complex partial seizures.
        Biol Psychiatry. 1983; 18: 269-293
        • Albert D.J.
        • Nanji N.
        • Chew G.L.
        Structures posterior to the olfactory bulbs which are responsible for mouse killing and hyper-activity following lesions of the olfactory bulb.
        Physiol Behav. 1981; 26: 395-399
        • Amir S.
        Involvement of endogenous opioids with forced swimming-induced immobility in mice.
        Physiol Behav. 1982; 28: 249-251
        • Anisman H.
        • de Catanzaro D.
        • Remington G.
        Escape performance following exposure to inescapable shock: Deficits in motor response maintenance.
        J Exp Psychol Animal Behav Process. 1978; 4: 197-218
        • Anisman H.
        • Irwin J.
        • Sklar L.S.
        Deficits in escape performance following catecholamine depletion: Implications for behavioral deficits induced by uncontrollable stress.
        Psychopharmacology. 1979; 64: 163-170
        • Anisman H.
        • Remington G.
        • Sklar L.S.
        Effect of inexcapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance.
        Psychopharmacology. 1979; 61: 107-124
        • Anisman H.
        • Sklar L.S.
        Catecholamine depletion upon exposure to stress: Mediation of the escape deficits produced by inescapable shock.
        J Comp Physiol Psychol. 1979; 93: 610-625
        • Anisman H.
        • Suissa A.
        • Sklar L.S.
        Escape deficits induced by uncontrollable stress: Antagonism by dopamine and norepinephrine agonists.
        Behav Neural Biol. 1980; 28: 34-47
        • Aprison M.H.
        • Takahashi R.
        • Tachiki K.
        Hypersensitive serotonergic receptors involved in clinical depression—A theory.
        in: Huber B. Aprison M.H. Neuropharmacology and Behavior. Plenum Press, New York1978: 23-53
        • Babington R.G.
        Antidepressants and the kindling effect.
        in: Fielding S. Lal H. Antidepressants. Futura, New York1975: 113-124
        • Babington R.G.
        The pharmacology of kindling.
        in: Hanin I. Usdin E. Animal Models in Psychiatry and Neurology. Pergamon Press, New York1977: 141-150
        • Babington R.G.
        Neurophysiological techniques and antidepressant activity.
        in: Enna S.J. Malick J.B. Richelson E. Antidepressants: Neurochemical, Behavioral and Clinical Perspectives. Raven Press, New York1981: 157-173
        • Betin C.
        • DeFeudis F.
        • Blauet N.
        • Clostre F.
        Further characterization of the behavioral despair test in mice: Positive effects of convulsants.
        Physiol Behav. 1982; 28: 307-311
        • Bloom F.E.
        • Baetge G.
        • Deyo S.
        • Ettenberg A.
        • Koda L.
        • Magistretti P.J.
        • Shoemaker W.J.
        • Staunton D.A.
        Chemical and physiological aspects of the actions of lithium and antidepressant drugs.
        Neuropharmacology. 1983; 22: 359-365
        • Brogden R.N.
        • Heel R.C.
        • Speight T.M.
        • Avery G.S.
        Mianserin: A review of its pharmacological properties and therapeutic efficacy in depressive illness.
        Drugs. 1978; 16: 273-301
        • Brown L.R.
        • Rosellini R.A.
        • Samuels O.B.
        • Riley E.P.
        Evidence for a serotonergic mechanism of the learned helplessness phenomenon.
        Pharmacol Biochem Behav. 1982; 17: 877-883
        • Browne R.C.
        • Derrington D.C.
        • Segal D.S.
        Comparison of opiate- and opioid-peptide-induced immobility.
        Life Sci. 1979; 24: 933-942
        • Cain D.P.
        The role of the olfactory bulb in limbic mechanisms.
        Psychol Bull. 1974; 81: 654-671
        • Cairncross K.D.
        On the peripheral pharmacology of amitriptyline.
        Arch Int Pharmacodyn. 1965; 154: 438-448
        • Cairncross K.D.
        • King M.G.
        Facilitation of avoidance learning in anosmic rats by amitriptyline.
        in: Proc Aust Physiol Pharmacol Soc. 2. 1971: 25
        • Cairncross K.D.
        • McCalloch M.W.
        • Story D.F.
        • Trinker F.
        Modification of synaptic transmission in the superior cervical ganglia by epinephrine norepinephrine and protripytline.
        Int J Neuropharmacol. 1967; 6: 293-300
        • Cairncross K.D.
        • Schofield S.P.
        • King M.G.
        The implication of noradrenaline in avoidance learning in the rat.
        Prog Brain Res. 1973; 39: 481-485
        • Cairncross K.D.
        • Schofield S.P.M.
        • Bassett J.R.
        Endogenous brain norepinephrine levels following bilateral olfactory bulb ablation.
        Pharmacol Biochem Behav. 1975; 3: 425-427
        • Cairncross K.D.
        • King M.G.
        • Schofield S.P.M.
        Effect of amitriptyline on avoidance learning in rats following bilateral olfactory ablation.
        Pharmacol Biochem Behav. 1975; 3: 1063-1067
        • Cairncross K.D.
        • Cox B.
        • Forster C.
        • Wren A.F.
        Olfactory projection systems, drugs and behavior. A review.
        Psychoneuroendocrinology. 1979; 4: 253-272
        • Carroll B.J.
        Problems with diagnostic criteria for depression.
        J Clin Psychiatry. 1984; 45: 14-18
        • Culman J.
        • Kvetnansky R.
        • Kiss A.
        • Mezey E.
        • Murgausk K.
        Interaction of serotonin and catecholamines in individual brain nuclei in adrenocortical activity during stress.
        in: Usdin E. Kvetnansky R. Kopin I.J. Catecholamines and Stress: Recent Advances. Elsevier-North Holland, New York1980
        • Delini-Stula A.
        • Vassout A.
        Modulatory effects of baclofen, muscimol and GABA on interspecific aggressive behavior in the rat.
        Neuropharmacology. 1978; 17: 1063-1065
        • Devoize J.L.
        • Rigal F.
        • Eschalier A.
        • Trolese J.F.
        Naloxone inhibits clomipramine in mouse forced swimming test.
        Eur J Pharmacol. 1982; 78: 229-231
        • Eichelman B.
        Animal models: Their role in the study of aggressive behavior in humans.
        Prog Neuropsychopharmacol. 1978; 2: 633-643
        • Erlenmeyer-Kimling L.
        Advantages of a behavior-genetic approach to investigating stress in the depressive disorders.
        in: Depue R.A. The Psychobiology of the Depressive Disorders: Implications for the Effects of Stress. Academic Press, Orlando, FL1979: 391-407
        • Eschalier A.
        • Montastruc J.L.
        • Devoize J.L.
        • Rigal F.
        • Gaillard-Plaza G.
        • Pechadre J.C.
        Influence of naloxone and methysergide on the analgesic effect of clomipramine in rats.
        Eur J Pharmacol. 1981; 74: 1-7
        • Fibiger H.C.
        • Phillips A.G.
        Increased intracranial self-stimulation in rats after long-term administration of desipramine.
        Science. 1981; 214: 683-685
        • Fleisher L.N.
        • Simon J.R.
        • Aprison M.H.
        A biochemical-behavioral model for studying serotonergic supersensitivity in brain.
        J Neurochem. 1979; 32: 1613-1619
        • Gershon E.S.
        • Hamovit J.
        • Guroff J.J.
        • Dibble E.
        • Leckman J.F.
        • Sceery W.
        • Targum S.D.
        • Nurnberger J.I.
        • Goldin L.R.
        • Bunney W.E.
        A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands.
        Arch Gen Psychiatry. 1982; 39: 1157-1167
        • Halasz N.
        • Shepherd G.M.
        Neurochemistry of the vertebrate olfactory bulb.
        Neuroscience. 1983; 10: 579-619
        • Harlow H.F.
        • Harlow M.K.
        The affectional systems.
        in: Behavior of Non-human Primates. Vol 2. Academic Press, Orlando, FL1965: 287-334
        • Harlow H.F.
        • Zimmermann R.R.
        Affectional responses in the infant monkey.
        Science. 1959; 130: 421-432
        • Hatotani N.
        • Nomura J.
        • Inoue K.
        • Kitayama I.
        Psychoendocrine model of depression.
        Psychoneuroendocrinology. 1979; 4: 155-172
        • Hawkins J.
        • Hicks R.A.
        • Phillips N.
        • Moore J.D.
        Swimming rats and human depression.
        Nature. 1978; 274: 512
        • Hingtgen J.N.
        • Hendrie H.C.
        • Aprison M.H.
        Postsynaptic serotonergic blockade following chronic antidepressive treatment with trazodone in an animal model of depression.
        Pharmacol Biochem Behav. 1984; 20: 425-428
        • Hirsch J.D.
        Opiate and muscarinic binding in five limbic areas after bilateral olfactory bulbectomy.
        Brain Res. 1980; 198: 271-283
        • Horovitz Z.P.
        • Ragozzino P.W.
        • Leaf R.C.
        Selective blockade of rat mouse-killing by anti-depressants.
        Life Sci. 1965; 4: 1909-1912
        • Horovitz Z.P.
        • Piala J.J.
        • High J.P.
        • Burke J.C.
        • Leaf R.C.
        Effects of drugs on the mouse-killing test and its relation to amygdaloid function.
        Int J Neuropharmacol. 1966; 5: 405-411
        • Howard J.L.
        • Soroko F.E.
        • Cooper B.R.
        Empirical behavioral models of depression with emphasis on tetrabenazine antagonism.
        in: Enna S.J. Malick J.B. Richelson E. Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives. Raven Press, New York1981: 107-120
        • Hrdina P.D.
        • von Kulmiz P.
        • Stretch R.
        Pharmacological modification of experimental depression in infant macaques.
        Psychopharmacology. 1979; 64: 89-93
        • Itil T.M.
        Quantitative pharmacoelectroencephalography in the discovery of a new group of psychotropic drugs.
        Dis Nerv Syst. 1972; 33: 557-559
        • Jesberger J.A.
        • Richardson J.S.
        Actions of amitriptyline in an animal model of depression.
        Trans Am Soc Neurochem. 1981; 12: 276
        • Jesberger J.A.
        • Richardson J.S.
        Neurochemical aspects of depression: The past and the future?.
        Int J Neurosci. 1985; (in press)
        • Karli P.
        The Norway rat's killing response to the white mouse, an experimental analysis.
        Behavior. 1956; 10: 81-103
        • Katz R.J.
        Animal models and human depressive disorders.
        Neurosci Biobehav Rev. 1981; 5: 231-246
        • Katz R.
        Animal model of depression: Pharmacological sensitivity of a hedonic deficit.
        Pharmacol Biochem Behav. 1982; 16: 965-968
        • Katz R.J.
        • Hersh S.
        Amitriptyline and scopolamine in an animal model of depression.
        Neurosci Biobehav Rev. 1981; 5: 265-271
        • Katz R.J.
        • Sibel M.
        Animal model of depression: Tests of three structurally and pharmacologically novel antidepressant compounds.
        Pharmacol Biochem Behav. 1982; 16: 973-977
        • Kaufman I.C.
        • Rosenblum L.A.
        Depression in infant monkeys separated from their mothers.
        Science. 1967; 155: 1030-1031
        • Kaufman I.C.
        • Rosenblum L.A.
        The reaction to separation in infant monkeys: Anaclitic depression and conservation withdrawal.
        Psychosom Med. 1967; 29: 648-675
        • King M.G.
        • Cairncross K.D.
        Effects of olfactory bulb section on brain noradrenaline, corticosterone and conditioning in the rat.
        Pharmacol Biochem Behav. 1974; 2: 347-353
        • Klerman G.L.
        History and development of modern concepts of affective illness.
        in: Post R.M. Ballenger J.C. Neurobiology of Mood Disorders. Williams & Wilkins, Baltimore1984: 1-19
        • Koyuncuoglu H.
        • Eroglu L.
        • Altug T.
        Effects of l-aspartic acid, l-asparagine and/or l-asparaginase on forced swimming-induced immobility, analgesia, and decrease in rectal temperature in rats.
        Experientia. 1982; 38: 117-118
        • Kraemer G.W.
        • McKinney W.T.
        • Prange A.J.
        • Breese G.R.
        • McMurray T.M.
        • Kemnitz J.
        Isoniazid: Behavioral and biochemical effects in rhesus monkeys.
        Life Sci. 1976; 19: 49-60
        • Leith N.J.
        • Barrett R.J.
        Effects of chronic amphetamine or reserpine on self stimulation responding: Animal model of depression?.
        Psychopharmacology. 1980; 72: 9-15
        • Leonard B.E.
        • Tuite M.
        Anatomical, physiological and behavioral aspects of olfactory bulbectomy in the rat.
        Int Rev Neurobiol. 1981; 22: 251-286
        • Leshner A.I.
        • Hofstein F.
        • Samuel D.
        Intraventricular injection of antivasopressin serum blocks learned helplessness in rats.
        Pharmacol Biochem Behav. 1978; 9: 887-897
        • Leshner A.
        • Remler M.
        • Biegon A.
        • Samuel D.
        Desmethyl-imipramine (DMI) counteracts learned helplessness in rats.
        Psychopharmacology. 1979; 66: 207-208
        • Lewis J.K.
        • McKinney W.T.
        The effect of electrically-induced convulsions on the behavior of normal and abnormal rhesus monkeys.
        Dis Nerv Syst. 1976; : 687-693
        • Lewis J.K.
        • McKinney W.T.
        • Young L.D.
        • Kraemer G.W.
        Mother-infant separation in rhesus monkeys as a model of human depression: A reconsideration.
        Arch Gen Psychiatry. 1976; 33: 699-705
        • Lynch M.A.
        • Leonard B.E.
        Effect of chronic amphetamine administration on the behavior of rats in the open field apparatus: Reversal of post-withdrawal depression by two antidepressants.
        J Pharm Pharmacol. 1978; 30: 798-799
        • Maier S.F.
        • Seligman M.E.P.
        Learned helplessness: Theory and evidence.
        J Exp Psychol. 1976; 105: 3-46
        • Maj J.
        Pharmacological spectrum of some new antidepressants.
        in: Advances in Pharmacology and Therapeutics, Vol 5, Neuropsychopharmacology. Pergamon Press, New York1979: 161-170
        • Mandel P.
        • Mack G.
        • Kempf E.
        Molecular basis of some models of aggressive behavior.
        in: Sandler M. Psychopharmacology and Aggression. Raven Press, New York1979: 95-110
        • Mann E.
        • Enna S.J.
        Neurochemical and behavioral correlates of antidepressant drug action.
        Life Sci. 1982; 30: 1653-1661
        • Marks H.E.
        • Remley N.R.
        • Seago J.D.
        • Hastings D.W.
        Effects of bilateral lesions of the olfactory bulbs of rats on measures of learning and motivation.
        Physiol Behav. 1971; 7: 1-6
        • Marks P.C.
        • O'Brien M.
        • Paxinos G.
        Chlorimipramine inhibition of muricide: The role of the ascending 5-HT projection.
        Brain Res. 1978; 149: 270-273
        • McKinney W.T.
        Biobehavioral models of depression in monkeys.
        in: Hanin I. Usdin E. Animal Models in Psychiatry and Neurology. Pergamon Press, New York1977: 117-126
        • Moran E.C.
        • McKinney W.T.
        Effects of chlorpromazine on the vertical chamber syndrome in rhesus monkeys.
        Arch Gen Psychiatry. 1975; 32: 1409-1413
        • Nagayama H.
        • Hingtgen J.N.
        • Aprison M.H.
        Pre- and postsynaptic serotonergic manipulations in an animal model of depression.
        Pharmacol Biochem Behav. 1980; 13: 575-579
        • Nagayama H.
        • Hingtgen J.N.
        • Aprison M.H.
        Postsynaptic action by four antidepressant drugs in an animal model of depression.
        Pharmacol Biochem Behav. 1981; 15: 125-130
        • Niemegeers C.J.E.
        • Janssen P.A.J.
        Differential antagonism to amphetamine induced oxygen consumption and agitation by psychoactive drugs.
        in: Fielding S. Lal H. Antidepressants. Futura Press, New York1975: 125-141
        • Nomura S.
        • Shimizu J.
        • Kinjo M.
        • Kametani H.
        • Nakazawa T.
        A new behavioral test for antidepressant drugs.
        Eur J Pharmacol. 1982; 83: 171-175
        • Onodera K.
        • Ogura Y.
        • Kisara K.
        Characteristics of muricide induced by thiamine deficiency and its suppression by antidepressants or intraventricular serotonin.
        Physiol Behav. 1981; 27: 847-853
        • Parkes C.M.
        Bereavement: Studies of Grief in Adult Life.
        Tavistock, London1972
        • Petty F.
        • Sherman A.D.
        Reversal of learned helplessness by imipramine.
        Commun Psychopharmacol. 1979; 3: 371-373
        • Petty F.
        • Sherman A.D.
        GABAergic modulation of learned helplessness.
        Pharmacol Biochem Behav. 1981; 15: 567-570
        • Platt J.E.
        • Stone E.A.
        Chronic restraint stress elicits a positive antidepressant response on the forced swim test.
        Eur J Pharmacol. 1982; 82: 179-181
        • Pohorecky L.A.
        • Larin F.
        • Wurtman R.J.
        Mechanisms of changes in brain norepinephrine levels following olfactory bulb lesions.
        Life Sci. 1969; 8: 1309-1317
        • Porsolt R.D.
        Behavioral despair.
        in: Enna S.J. Malick J.B. Richelson E. Antidepressants: Neurochemical, Behavioral and Clinical Perspectives. Raven Press, New York1981: 121-139
        • Porsolt R.D.
        • LePichon M.
        • Jalfre M.
        Depression: A new animal model sensitive to antidepressant treatments.
        Nature. 1977; 266: 730-732
        • Post R.M.
        • Ballenger J.C.
        Kindling models for the progressive development of behavioral psychopathology: Sensitization to electrical, pharmacological and psychological stimuli.
        in: Handbook of Biological Psychiatry. Marcel Dekker, New York1981: 609-651 (Pt. 4)
        • Post R.M.
        • Rubinow D.R.
        • Ballenger J.C.
        Conditioning, sensitization and kindling: Implications for the course of affective illness.
        in: Post R.M. Ballenger J.C. Neurobiology of Mood Disorders. Williams & Wilkins, Baltimore1984: 432-466
        • Quitkin F.M.
        • Harrison W.
        • Liebowitz M.
        • McGrath P.
        • Rabkin J.G.
        • Stewart J.
        • Markowitz J.
        Defining the boundaries of atypical depression.
        J Clin Psychiatry. 1984; 45: 19-21
        • Quitkin F.M.
        • Rabkin J.G.
        • Ross D.
        • Stewart J.W.
        Identification of true drug response to antidepressants: Use of pattern analysis.
        Arch Gen Psychiatry. 1984; 41: 782-786
        • Reite M.
        Maternal separation in monkey infants: A model of depression.
        in: Hanin I. Usdin E. Animal Models in Psychiatry and Neurology. Pergamon Press, New York1977: 127-139
        • Reite M.
        • Short R.A.
        Noctural sleep in isolation-reared monkeys: Evidence for environmental independence.
        Dev Psychobiol. 1977; 10: 555-561
        • Reite M.
        • Short R.A.
        Nocturnal sleep in separated monkey infants.
        Arch Gen Psychiatry. 1978; 35: 1247-1253
        • Richardson J.S.
        Neurochemical psychiatry as a source of hypotheses concerning the role of homeostatic mechanisms in brain function.
        Int J Neurosci. 1984; (in press)
        • Richardson J.S.
        • Chiu E.K.Y.
        The regulation of cardiovascular functions by monoamine neurotransmitters in the brain.
        Int J Neurosci. 1983; 20: 103-148
        • Robinson R.G.
        • Kubos K.L.
        • Starr L.B.
        • Rao K.
        • Price T.R.
        Mood changes in stroke patients: Relationship to lesion location.
        Comp Psychiatry. 1983; 24: 555-566
        • Sanghvi I.S.
        • Gershon S.
        Animal test models for prediction of clinical antidepressant activity.
        in: Hanin I. Usdin E. Animal Models in Psychiatry and Neurology. Pergamon, New York1977: 151-169
        • Schildkraut J.J.
        • Kety S.S.
        Biogenic amines and emotions.
        Science. 1967; 156: 21-30
        • Seligman M.
        • Maier S.
        Failure to escape traumatic shock.
        J Exp Psychol. 1967; 74: 1-9
        • Seligman M.
        • Maier S.
        • Geer J.
        The alleviation of learned helplessness in the dog.
        J Abnorm Soc Psychol. 1968; 73: 256-262
        • Seltzer U.
        • Tonge S.R.
        Methylamphetamine withdrawal as a model for the depressive state: Antagonism of post amphetamine depression by imipramine.
        J Pharm Pharmacol. 1975; 27: 16P
        • Sherman A.D.
        • Petty F.
        Neurochemical basis of the action of antidepressants on learned helplessness.
        Behav Neurol Biol. 1980; 30: 119-134
        • Sherman A.D.
        • Allers G.L.
        • Petty F.
        • Henn F.A.
        A neuropharmacologically relevant animal model of depression.
        Neuropharmacology. 1979; 18: 891-893
        • Sieck M.H.
        • Gordon B.L.
        Anterior olfactory nucleus or lateral olfactory tract destruction in rats and changes in appetitive and aversive behavior.
        Physiol Behav. 1973; 10: 1051-1059
        • Stanford C.
        • Fillenz M.
        • Ryan E.
        The effect of repeated mild stress on cerebral cortical adrenoceptors and noradrenaline synthesis in the rat.
        Neurosci Lett. 1984; 45: 163-167
        • Stone E.A.
        Stress and catecholamines.
        in: Catecholamines and Behavior. Vol 2. Plenum Press, New York1975: 31-66
        • Stone E.A.
        Reduction in cortical beta adrenergic receptor density after chronic intermittent food deprivation.
        Neurosci Lett. 1983; 40: 33-37
        • Stone E.A.
        • Platt J.E.
        Brain adrenergic receptors and resistance to stress.
        Brain Res. 1982; 237: 405-414
        • Stone E.A.
        • Platt J.E.
        • Trullas R.
        • Slucky A.V.
        Reduction of the cAMP response to norepinephrine in rat cerebral cortex following repeated restraint stress.
        Psychopharmacology. 1984; 82: 403-405
        • Sulser F.
        New perspectives on the mode of action of antidepressant drugs.
        Trends Pharmacol Sci. 1979; 1: 92-94
        • Sulser F.
        • Soroko F.
        On the role of rate of brain norepinephrine release in the antibenzoquinolizine action of desipramine.
        Psychopharmacologia. 1965; 8: 191-200
        • Suomi S.J.
        • DeLizio R.
        • Harlow H.F.
        Social rehabilitation of separation-induced depressive disorders in monkeys.
        Am J Psychiatry. 1976; 133: 1279-1285
        • Suomi S.J.
        • Seaman S.F.
        • Lewis J.K.
        • Delizio R.D.
        • McKinney W.T.
        Effects of imipramine treatment on separation-induced social disorders in rhesus monkeys.
        Arch Gen Psychiatry. 1978; 35: 321-325
        • Valzelli L.
        • Garattini S.
        • Bernasconi S.
        • Sala A.
        Neurochemical correlates of muricidal behavior in rats.
        Neuropsychobiology. 1981; 7: 172-178
        • van Praag H.M.
        • Korf J.
        Endogenous depressions with and without disturbances in 5-hydroxytryptamine metabolism: A biochemical classification.
        Psychopharmacology. 1971; 19: 148-152
        • van Riezen H.
        • Schnieden H.
        • Wren A.
        Behavioral changes following olfactory bulbectomy in rat: A possible model for the detection of antidepressant drugs.
        Br J Pharmacol. 1976; 52: 426-427P
        • Wallach M.B.
        • Hedley L.R.
        The effects of antihistamines in a modified behavioral despair test.
        Commun Psychopharmacol. 1979; 3: 35-39
        • Watanabe S.
        • Inoue M.
        • Ueki S.
        Effects of psychotropic drugs injected into the limbic structures on mouse-killing behavior in the rat with olfactory bulb ablations.
        Jpn J Pharmacol. 1979; 29: 493-496
        • Weissman M.M.
        • Boyd J.H.
        The epidemiology of affective disorders.
        in: Post R.M. Ballenger J.C. Neurobiology of Mood Disorders. Williams & Wilkins, Baltimore1984: 60-75
        • Weissman M.M.
        • Gershon E.S.
        • Kidd K.K.
        • Prusoff B.A.
        • Leckman J.F.
        • Dibble E.
        • Hamovit J.
        • Thompson D.
        • Pauls D.L.
        • Guroff J.J.
        Psychiatric disorders in the relatives of probands with affective disorders.
        Arch Gen Psychiatry. 1984; 41: 13-21
        • Willner P.
        The validity of animal models of depression.
        Psychopharmacology. 1984; 83: 1-16
        • Yamamota T.
        • Ueki S.
        Effects of drugs on hyperactivity and aggression induced by raphe lesions in rat.
        Pharmacol Biochem Behav. 1978; 9: 821-826
        • Yamamoto T.
        • Shibata S.
        • Ueki S.
        Effects of locus coeruleus stimulation on muricide in olfactory bulbectomized and raphe lesioned rats.
        Jpn J Pharmacol. 1982; 32: 845-853
        • Zung W.W.K.
        • Mahorney S.L.
        • Davidson J.
        Classification of depressive disorders: A multiaxial approach.
        J Clin Psychiatry. 1984; 45: 5-13