Advertisement

Autoimmunity, Autoantibodies, and Autism Spectrum Disorder

  • Elizabeth Edmiston
    Affiliations
    Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, California

    The M.I.N.D. Institute, University of California, Davis, Davis, California
    Search for articles by this author
  • Paul Ashwood
    Affiliations
    The M.I.N.D. Institute, University of California, Davis, Davis, California

    NIEHS Center for Children’s Environmental Health, University of California, Davis, Davis, California

    Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
    Search for articles by this author
  • Judy Van de Water
    Correspondence
    Address correspondence to: Judy Van de WaterDivision of Rheumatology/Allergy and Clinical Immunology, 451 E. Health Sciences Dr., Suite 6510, University of California Davis, Davis, CA 95616; .
    Affiliations
    Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, California

    The M.I.N.D. Institute, University of California, Davis, Davis, California

    NIEHS Center for Children’s Environmental Health, University of California, Davis, Davis, California
    Search for articles by this author
Published:September 01, 2016DOI:https://doi.org/10.1016/j.biopsych.2016.08.031

      Abstract

      Auism spectrum disorder (ASD) now affects one in 68 births in the United States and is the fastest growing neurodevelopmental disability worldwide. Alarmingly, for the majority of cases, the causes of ASD are largely unknown, but it is becoming increasingly accepted that ASD is no longer defined simply as a behavioral disorder, but rather as a highly complex and heterogeneous biological disorder. Although research has focused on the identification of genetic abnormalities, emerging studies increasingly suggest that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in ASD. This review summarizes the investigations implicating autoimmunity and autoantibodies in ASD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. American Psychiatric Association, editor (2013): Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington, DC: American Psychiatric Association

        • Kanner L.
        Irrelevant and metaphorical language in early infanitle autism.
        Am J Psychiatry. 1946; 103: 242-246
        • Lord C.
        • Risi S.
        • Lambrecht L.
        • Cook E.H.
        • Leventhal B.L.
        • DiLavore P.C.
        • et al.
        The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism.
        J Autism Dev Disord. 2000; 30: 205-223
        • Newschaffer C.J.
        • Croen L.A.
        • Daniels J.
        • Giarelli E.
        • Grether J.K.
        • Levy S.E.
        • et al.
        The epidemiology of autism spectrum disorders.
        Annu Rev Public Health. 2007; 28: 235-258
        • Snow A.V.
        • Lecavalier L.
        • Houts C.
        The structure of the Autism Diagnostic Interview-Revised: diagnostic and phenotypic implications.
        J Child Psychol Psychiatry Allied Disciplines. 2009; 50: 734-742
        • Ousley O.
        • Cermak T.
        Autism spectrum disorder: Defining dimensions and subgroups.
        Curr Dev Disord Rep. 2013; 1: 20-28
        • McDougle C.J.
        • Landino S.M.
        • Vahabzadeh A.
        • O’Rourke J.
        • Zurcher N.R.
        • Finger B.C.
        • et al.
        Toward an immune-mediated subtype of autism spectrum disorder.
        Brain Res. 2015; 1617: 72-92
        • Onore C.
        • Careaga M.
        • Ashwood P.
        The role of immune dysfunction in the pathophysiology of autism.
        Brain Behav Immun. 2012; 26: 383-392
        • Warren R.P.
        • Singh V.K.
        • Cole P.
        • Odell J.D.
        • Pingree C.B.
        • Warren W.L.
        • et al.
        Increased frequency of the null allele at the complement C4b locus in autism.
        Clin Exp Immunol. 1991; 83: 438-440
        • Warren R.P.
        • Odell J.D.
        • Warren W.L.
        • Burger R.A.
        • Maciulis A.
        • Daniels W.W.
        • et al.
        Strong association of the third hypervariable region of HLA-DRβ1 with autism.
        J Neuroimmunol. 1996; 67: 97-102
        • Torres A.R.
        • Sweeten T.L.
        • Cutler A.
        • Bedke B.J.
        • Fillmore M.
        • Stubbs E.G.
        • Odell D.
        The association and linkage of the HLA-A2 class I allele with autism.
        Hum Immunol. 2006; 67: 346-351
        • Campbell D.B.
        • Li C.
        • Sutcliffe J.S.
        • Persico A.M.
        • Levitt P.
        Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder.
        Autism Res. 2008; 1: 159-168
        • Thanseem I.
        • Nakamura K.
        • Miyachi T.
        • Toyota T.
        • Yamada S.
        • Tsujii M.
        • et al.
        Further evidence for the role of MET in autism susceptibility.
        Neurosci Res. 2010; 68: 137-141
        • Mostafa G.A.
        • Shehab A.A.
        The link of C4B null allele to autism and to a family history of autoimmunity in Egyptian autistic children.
        J Neuroimmunol. 2010; 223: 115-119
        • Jung J.Y.
        • Kohane I.S.
        • Wall D.P.
        Identification of autoimmune gene signatures in autism.
        Transl Psychiatry. 2011; 1 (e63–e63)
        • Torres A.R.
        • Westover J.B.
        • Gibbons C.
        • Johnson R.C.
        • Ward D.C.
        Activating killer-cell immunoglobulin-like receptors (KIR) and their cognate HLA ligands are significantly increased in autism.
        Brain Behav Immun. 2012; 26: 1122-1127
        • Comi A.M.
        • Zimmerman A.W.
        • Frye V.H.
        • Law P.A.
        • Peeden J.N.
        Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism.
        J Child Neurol. 1999; 14: 388-394
        • Atladóttir H.O.
        • Pedersen M.G.
        • Thorsen P.
        • Mortensen P.B.
        • Deleuran B.
        • Eaton W.W.
        • et al.
        Association of family history of autoimmune diseases and autism spectrum disorders.
        Pediatrics. 2009; 124: 687-694
        • Vinet É.
        • Pineau C.A.
        • Clarke A.E.
        • Scott S.
        • Fombonne É.
        • Joseph L.
        • et al.
        Increased risk of autism spectrum disorders in children born to women with systemic lupus erythematosus: results from a large population-based cohort.
        Arthritis Rheum. 2015; 67: 3201-3208
        • Wu S.
        • Ding Y.
        • Wu F.
        • Li R.
        • Xie G.
        • Hou J.
        • et al.
        Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis.
        Neurosci Biobehav Rev. 2015; 55: 322-332
        • Chen S.-W.
        • Zhong X.-S.
        • Jiang L.-N.
        • Zheng X.-Y.
        • Xiong Y.-Q.
        • Ma S.-J.
        • et al.
        Maternal autoimmune diseases and the risk of autism spectrum disorders in offspring: A systematic review and meta-analysis.
        Behav Brain Res. 2016; 296: 61-69
        • Chess S.
        Autism in children with congenital rubella.
        J Autism Child Schizophr. 1971; 1: 33-47
        • Meyer U.
        • Nyffeler M.
        • Engler A.
        • Urwyler A.
        • Schedlowski M.
        • Knuesel I.
        • et al.
        The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology.
        J Neurosci. 2006; 26: 4752-4762
        • Smith S.E.
        • Li J.
        • Garbett K.
        • Mirnics K.
        • Patterson P.H.
        Maternal immune activation alters fetal brain development through interleukin-6.
        J Neurosci. 2007; 27: 10695-10702
        • Atladóttir H.Ó.
        • Thorsen P.
        • Østergaard L.
        • Schendel D.E.
        • Lemcke S.
        • Abdallah M.
        • et al.
        Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders.
        J Autism Dev Disord. 2010; 40: 1423-1430
        • Patterson P.H.
        Maternal infection and immune involvement in autism.
        Trends Mol Med. 2011; 17: 389-394
        • Garay P.A.
        • Hsiao E.Y.
        • Patterson P.H.
        • McAllister A.K.
        Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development.
        Brain Behav Immun. 2013; 31: 54-68
        • Ashwood P.
        • Van de Water J.
        Is autism an autoimmune disease?.
        AutoimmunRev. 2004; 3: 557-562
        • Braunschweig D.
        • Van de Water J.
        Maternal autoantibodies in autism.
        Arch Neurol. 2012; 69: 693-699
        • Fox E.
        • Amaral D.
        • Van de Water J.
        Maternal and fetal antibrain antibodies in development and disease.
        Dev Neurobiol. 2012; 72: 1327-1334
        • Fox-Edmiston E.
        • Van De Water J.
        Maternal anti-fetal brain IgG autoantibodies and autism spectrum disorder: current knowledge and its implications for potential therapeutics.
        CNS Drugs. 2015; 29: 715-724
        • Mallampalli M.P.
        • Davies E.
        • Wood D.
        • Robertson H.
        • Polato F.
        • Carter C.L.
        Role of environment and sex differences in the development of autoimmune diseases: a roundtable meeting report.
        J Women Health (2002). 2013; 22: 578-586
        • Hertz-Picciotto I.
        • Croen L.A.
        • Hansen R.
        • Jones C.R.
        • van de Water J.
        • Pessah I.N.
        The CHARGE study: an epidemiologic investigation of genetic and environmental factors contributing to autism.
        Environ Health Perspect. 2006; 114: 1119-1125
        • Christensen D.L.
        • Baio J.
        • Van Naarden Braun K.
        • Bilder D.
        • Charles J.
        • Constantino J.N.
        • et al.
        Prevalence of autism spectrum disorders - autism and developmental disabilities monitoring network, 11 sites, United States, 2012.
        MMWR Surveill Summ. 2016; 65: 1-23
        • Money J.
        • Bobrow N.A.
        • Clarke F.C.
        Autism and autoimmune disease: A family study.
        JAutism Child Schizophr. 1971; 1: 146-160
        • Croen L.A.
        • Grether J.K.
        • Yoshida C.K.
        • Odouli R.
        • Van de Water J.
        Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: A case-control study.
        Arch Pediatr Adolesc Med. 2005; 159: 151-157
        • Keil A.
        • Daniels J.L.
        • Forssen U.
        • Hultman C.
        • Cnattingius S.
        • Söderberg K.C.
        • et al.
        Parental autoimmune diseases associated with autism spectrum disorders in offspring.
        Epidemiology. 2010; 21: 805-808
        • Christen U.
        • von Herrath M.G.
        Initiation of autoimmunity.
        Curr Opin Immunol. 2004; 16: 759-767
        • Ashwood P.
        • Van de Water J.
        A review of autism and the immune response.
        Clin Dev Immunol. 2004; 11: 165-174
        • Garay P.A.
        • McAllister A.K.
        Novel roles for immune molecules in neural development: Implications for neurodevelopmental disorders.
        Front Synaptic Neurosci. 2010; 2 (136-136)
        • Filiano A.J.
        • Gadani S.P.
        • Kipnis J.
        Interactions of innate and adaptive immunity in brain development and function.
        Brain Res. 2015; 1617: 18-27
        • Gluecksohn-Waelsch S.
        The effect of maternal immunization against organ tissues on embryonic differentiation in the mouse.
        Development. 1957; 5: 83-92
        • Adinolfi M.
        • Beck S.E.
        • Haddad S.A.
        • Seller M.J.
        Permeability of the blood-cerebrospinal fluid barrier to plasma proteins during foetal and perinatal life.
        Nature. 1976; 259: 140-141
        • Plum F.
        The concept of a blood-brain barrier.
        Ann Neurol. 1981; 9 (622–622)
        • Adinolfi M.
        The development of the human blood-CSF brain barrier.
        Dev Med Child Neurol. 1985; 27: 532-537
        • Karpiak Jr, S.E.
        • Rapport M.M.
        Behavioral changes in 2-month-old rats following prenatal exposure to antibodies against synaptic membranes.
        Brain Res. 1975; 92: 405-413
        • Rick J.T.
        • Gregson A.N.
        • Leibowitz S.
        • Adinolfi M.
        Behavioural changes in adult rats following administration of antibodies again brain gangliosides.
        Dev Med Child Neurol. 1980; 22: 719-724
        • Warren R.P.
        • Cole P.
        • Odell J.D.
        • Pingree C.B.
        • Warren W.L.
        • White E.
        • et al.
        Detection of maternal antibodies in infantile autism.
        J Am Acad Child Adolesc Psychiatry. 1990; 29: 873-877
        • Dalton P.
        • Deacon R.
        • Blamire A.
        • Pike M.
        • McKinlay I.
        • Stein J.
        • et al.
        Maternal neuronal antibodies associated with autism and a language disorder.
        Ann Neurol. 2003; 53: 533-537
        • Braunschweig D.
        • Ashwood P.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • Hansen R.
        • Croen L.A.
        • et al.
        Autism: Maternally derived antibodies specific for fetal brain proteins.
        Neurotoxicology. 2008; 29: 226-231
        • Zimmerman A.W.
        • Connors S.L.
        • Matteson K.J.
        • Lee L.C.
        • Singer H.S.
        • Castaneda J.A.
        • Pearce D.A.
        Maternal antibrain antibodies in autism.
        Brain Behav Immun. 2007; 21: 351-357
        • Singer H.S.
        • Morris C.M.
        • Gause C.D.
        • Gillin P.K.
        • Crawford S.
        • Zimmerman A.W.
        Antibodies against fetal brain in sera of mothers with autistic children.
        J Neuroimmunol. 2008; 194: 165-172
        • Croen L.A.
        • Braunschweig D.
        Maternal mid-pregnancy autoantibodies to fetal brain protein: The early markers for autism study.
        Biol Psychiatry. 2008; 64: 583-588
        • Heuer L.
        • Braunschweig D.
        • Ashwood P.
        • Van de Water J.
        • Campbell D.B.
        Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression.
        Transl Psychiatry. 2011; 1: e48
        • Brimberg L.
        • Sadiq A.
        • Gregersen P.K.
        • Diamond B.
        Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder.
        Mol Psychiatry. 2013; 18: 1171-1177
        • Braunschweig D.
        • Duncanson P.
        • Boyce R.
        • Hansen R.
        • Ashwood P.
        • Pessah I.N.
        • et al.
        Behavioral correlates of maternal antibody status among children with autism.
        J Autism Dev Disord. 2012; 42: 1435-1445
        • Nordahl C.W.
        • Braunschweig D.
        • Iosif A.-M.
        • Lee A.
        • Rogers S.
        • Ashwood P.
        • et al.
        Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder.
        Brain Behav Immun. 2013; 30: 61-65
        • Akum B.F.
        • Chen M.
        • Gunderson S.I.
        • Riefler G.M.
        • Scerri-Hansen M.M.
        • Firestein B.L.
        Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly.
        Nat Neurosci. 2004; 7: 145-152
        • Lopes M.H.
        • Hajj G.N.
        • Muras A.G.
        • Mancini G.L.
        • Castro R.M.
        • Ribeiro K.C.
        • et al.
        Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways.
        J Neurosci. 2005; 25: 11330-11339
        • Charrier E.
        • Reibel S.
        • Rogemond V.
        • Aguera M.
        • Thomasset N.
        • Honnorat J.
        Collapsin response mediator proteins (CRMPs).
        Mol Neurobiol. 2003; 28: 51-63
        • Quach T.T.
        • Duchemin A.-M.
        • Rogemond V.
        • Aguera M.
        • Honnorat J.
        • Belin M.-F.
        • et al.
        Involvement of collapsin response mediator proteins in the neurite extension induced by neurotrophins in dorsal root ganglion neurons.
        Mol Cell Neurosci. 2004; 25: 433-443
        • Eliseeva I.A.
        • Kim E.R.
        • Guryanov S.G.
        • Ovchinnikov L.P.
        • Lyabin D.N.
        Y-box-binding protein 1 (YB-1) and its functions.
        Biochemistry (Mosc). 2011; 76: 1402-1433
        • Hashimoto T.
        • Hussien R.
        • Cho H.-S.
        • Kaufer D.
        • Brooks G.A.
        Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles.
        PLoS One. 2008; 3: e2915
        • Braunschweig D.
        • Krakowiak P.
        • Duncanson P.
        • Boyce R.
        • Hansen R.L.
        • Ashwood P.
        • et al.
        Autism-specific maternal autoantibodies recognize critical proteins in developing brain.
        Transl Psychiatry. 2013; 3: e277
        • Diamond B.
        • Huerta P.T.
        Losing your nerves? Maybe it’s antibodies.
        Nat Rev Immunol. 2009; 9: 449-456
        • Diamond B.
        • Honig G.
        • Mader S.
        • Brimberg L.
        • Volpe B.T.
        Brain-reactive antibodies and disease.
        Annu Rev Immunol. 2013; 31: 345-385
        • Martin L.A.
        • Ashwood P.
        • Braunschweig D.
        • Cabanlit M.
        • Van de Water J.
        • Amaral D.G.
        Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism.
        Brain Behav Immun. 2008; 22: 806-816
        • Bauman M.D.
        • Iosif A.-M.M.
        • Ashwood P.
        • Braunschweig D.
        • Lee A.
        • Schumann C.M.
        • et al.
        Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.
        Transl Psychiatry. 2013; 3: e278
        • Braunschweig D.
        • Golub M.S.
        • Koenig C.M.
        • Qi L.
        • Pessah I.N.
        • Van de Water J.
        • et al.
        Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model.
        J Neuroimmunol. 2012; 252: 56-65
        • Singer H.S.
        • Morris C.
        • Gause C.
        • Pollard M.
        • Zimmerman A.W.
        • Pletnikov M.
        Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: A pregnant dam mouse model.
        J Neuroimmunol. 2009; 211: 39-48
        • Camacho J.
        • Jones K.
        • Miller E.
        • Ariza J.
        • Noctor S.
        • Van de Water J.
        • et al.
        Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice.
        Behav Brain Res. 2014; 266: 46-51
        • Martínez-Cerdeño V.
        • Camacho J.
        • Fox E.
        • Miller E.
        • Ariza J.
        • Kienzle D.
        • et al.
        Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals.
        Cereb Cortex. 2016; 26: 374-383
        • Benros M.E.
        • Eaton W.W.
        • Mortensen P.B.
        The epidemiologic evidence linking autoimmune diseases and psychosis.
        Biol Psychiatry. 2014; 75: 300-306
        • Heath R.G.
        • Krupp I.M.
        Schizophrenia as an immunologic disorder: I. Demonstration of antibrain globulins by fluorescent antibody techniques.
        Arch General Psychiatry. 1967; 16: 1-9
        • Patterson P.H.
        Immune involvement in schizophrenia and autism: Etiology, pathology and animal models.
        Behav Brain Res. 2009; 204: 313-321
        • Margari F.
        • Petruzzelli M.G.
        • Mianulli R.
        • Campa M.G.
        • Pastore A.
        • Tampoia M.
        Circulating anti-brain autoantibodies in schizophrenia and mood disorders.
        Psychiatry Res. 2015; 230: 704-708
        • Margari F.
        • Petruzzelli M.G.
        • Mianulli R.
        • Toto M.
        • Pastore A.
        • Bizzaro N.
        • et al.
        Anti-brain autoantibodies in the serum of schizophrenic patients: A case-control study.
        Psychiatry Res. 2013; 210: 800-805
        • Kansy J.W.
        • Katsovich L.
        • McIver K.S.
        • Pick J.
        • Zabriskie J.B.
        • Lombroso P.J.
        • et al.
        Identification of pyruvate kinase as an antigen associated with Tourette syndrome.
        J Neuroimmunol. 2006; 181: 165-176
        • Martino D.
        • Defazio G.
        • Church A.J.
        • Dale R.C.
        • Giovannoni G.
        • Robertson M.M.
        • et al.
        Antineuronal antibody status and phenotype analysis in Tourette’s syndrome.
        Mov Disord. 2007; 22: 1424-1429
        • Murphy T.K.
        • Kurlan R.
        • Leckman J.
        The immunobiology of Tourette’s disorder, pediatric autoimmune neuropsychiatric disorders associated with Streptococcus, and related disorders: A way forward.
        J Child Adolesc Psychopharmacol. 2010; 20: 317-331
        • Cheng Y.-h
        • Zheng Y.
        • He F.
        • Yang J.-h
        • Li W.-b
        • Wang M.-l
        • et al.
        Detection of autoantibodies and increased concentrations of interleukins in plasma from patients with Tourette’s syndrome.
        J Mol Neurosci. 2012; 48: 219-224
        • Elamin I.
        • Edwards M.J.
        • Martino D.
        Immune dysfunction in Tourette syndrome.
        Behav Neurol. 2013; 27: 23-32
        • Hornig M.
        • Lipkin W.I.
        Immune-mediated animal models of Tourette syndrome.
        Neurosci Biobehav Rev. 2013; 37: 1120-1138
        • Martino D.
        • Madhusudan N
        • Zis P
        • Cavanna AE
        An introduction to the clinical phenomenology of Tourette syndrome.
        Int Rev Neurobiol. 2013; 112: 1-33
        • Bhattacharyya S.
        • Khanna S.
        • Chakrabarty K.
        • Mahadevan A.
        • Christopher R.
        • Shankar S.K.
        Anti-brain autoantibodies and altered excitatory neurotransmitters in obsessive-compulsive disorder.
        Neuropsychopharmacology. 2009; 34: 2489-2496
        • Gause C.
        • Morris C.
        • Vernekar S.
        • Pardo-Villamizar C.
        • Grados M.A.
        • Singer H.S.
        Antineuronal antibodies in OCD: Comparisons in children with OCD-only, OCD+chronic tics and OCD+PANDAS.
        J Neuroimmunol. 2009; 214: 118-124
        • Guiseppe M.
        • Albert U.
        • Bogetto F.
        • Borghese C.
        • Berro A.C.
        • Mutani R.
        • et al.
        Anti-brain antibodies in adult patients with obsessive-compulsive disorder.
        J Affect Disord. 2009; 116: 192-200
        • Silva S.C.
        • Correia C.
        • Fesel C.
        • Barreto M.
        • Coutinho A.M.
        • Marques C.
        • et al.
        Autoantibody repertoires to brain tissue in autism nuclear families.
        J Neuroimmunol. 2004; 152: 176-182
        • Singer H.S.
        • Morris C.M.
        • Williams P.N.
        • Yoon D.Y.
        • Hong J.J.
        • Zimmerman A.W.
        Antibrain antibodies in children with autism and their unaffected siblings.
        J Neuroimmunol. 2006; 178: 149-155
        • Wills S.
        • Cabanlit M.
        • Bennett J.
        • Ashwood P.
        • Amaral D.
        • Van de Water J.
        Autoantibodies in autism spectrum disorders (ASD).
        Ann N Y Acad Sci. 2007; 1107: 79-91
        • Goines P.
        • Haapanen L.
        • Boyce R.
        Autoantibodies to cerebellum in children with autism associate with behavior.
        Brain Behav Immun. 2011; 25: 514-523
        • Morris C.M.
        • Zimmerman A.W.
        • Singer H.S.
        Childhood serum anti-fetal brain antibodies do not predict autism.
        Pediatr Neurol. 2009; 41: 288-290
        • Cabanlit M.
        • Wills S.
        • Goines P.
        • Ashwood P.
        • Van de Water J.
        Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder.
        Ann N Y Acad Sci. 2007; 1107: 92-103
        • Wills S.
        • Rossi C.C.
        • Bennett J.
        • Martinez Cerdeño V.
        • Ashwood P.
        • Amaral D.G.
        • et al.
        Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism.
        Mol Autism. 2011; 2: 1-5
        • Kowal C.
        • Athanassiou A.
        • Chen H.
        • Diamond B.
        Maternal antibodies and developing blood-brain barrier.
        Immunol Res. 2015; 63: 18-25
        • Coutinho E.
        • Harrison P.
        • Vincent A.
        Do neuronal autoantibodies cause psychosis? A neuroimmunological perspective.
        Biol Psychiatry. 2014; 75: 269-275
        • Hammer C.
        • Stepniak B.
        • Schneider A.
        • Papiol S.
        • Tantra M.
        • Begemann M.
        • et al.
        Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity.
        Mol Psychiatry. 2014; 19: 1143-1149