N-METHYL-D-ASPARTATE RECEPTORS: MOOD, PSYCHOSIS, AND COGNITION

IN THIS ISSUE - MAY 1ST

707 A brief summary of the articles appearing in this issue of Biological Psychiatry.

COMMENTARIES

708 Anti-N-Methyl-D-Aspartate Encephalitis: A Patient’s Perspective
 Susannah Cahalan

710 N-Methyl-D-Aspartate Receptors, Ketamine, and Rett Syndrome: Something Special on the Road to Treatments?
 David M. Katz, Frank S. Menniti, and Robert J. Mather
 » See corresponding articles on pages 746 and 755

713 Ketamine’s Antidepressant Actions: Potential Mechanisms in the Primate Medial Prefrontal Circuits That Represent Aversive Experience
 Amy F.T. Arnsten, John D. Murray, Hyojung Seo, and Daeyeol Lee
 » See corresponding article on page 765

EARLY CAREER INVESTIGATOR COMMENTARY

e57 From Mice to Men: Can Ketamine Enhance Resilience to Stress?
 Rebecca B. Price
 » See corresponding article on page 776

REVIEW

716 Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia
 Monika P. Jadi, M. Margarita Behrens, and Terrence J. Sejnowski

ARCHIVAL REPORTS

727 Structural Hippocampal Damage Following Anti-N-Methyl-D-Aspartate Receptor Encephalitis
 Carsten Finke, Ute A. Kopp, Anna Pajkert, Janina R. Behrens, Frank Leypoldt, Jens T. Wuerfel, Christoph J. Ploner, Harald Prüss, and Friedemann Paul

735 Temporal Memory and Its Enhancement by Estradiol Requires Surface Dynamics of Hippocampal CA1 N-Methyl-D-Aspartate Receptors
 Mylène Potier, François Georges, Laurent Brayda-Bruno, Laurent Ladépêche, Valérie Lamothé, Alice Shaam Al Abed, Laurent Groc, and Aline Marighetto

746 Cell-Specific Regulation of N-Methyl-D-Aspartate Receptor Maturation by MeCP2 in Cortical Circuits
 Susanna B. Mierau, Annarita Patrizi, Takao K. Hensch, and Michela Fagiolini
 » See commentary on page 710

755 Chronic Administration of the N-Methyl-D-Aspartate Receptor Antagonist Ketamine Improves Rett Syndrome Phenotype
 Annarita Patrizi, Nathalie Picard, Alex Joseph Simon, Georgia Gunner, Eleonora Centofante, Nick Arthur Andrews, and Michela Fagiolini
 » See commentary on page 710
The high-magnification image on the cover, from Figure 6 in Patrizi et al. (in this issue, pages 755-764), shows parvalbumin (red) and glutamic acid decarboxylase 65 (green) in Mecp2 knockout mice treated with vehicle. The authors found that ketamine improved symptoms of Rett syndrome and normalized parvalbumin-circuit inputs onto pyramidal cells in Mecp2 knockout mice, suggesting that N-methyl-D-aspartate receptor antagonism may effectively treat Rett syndrome.