The Mysterious GRIN3A and the Cause of Schizophrenia

Philadelphia, PA, March 14, 2013 – Since the 1960s, psychiatrists have been hunting for substances made by the body that might accumulate in abnormally high levels to produce the symptoms associated with schizophrenia. In particular, there was a search for chemicals that might be related to the hallucinogens phencyclidine (PCP) or lysergic acid diethylamide (LSD), which could explain the emergence of psychotic symptoms in schizophrenia. This “auto-intoxication” hypothesis led investigators on a wild goose chase where substances, including the “Pink Spot” and the “Frohman Factor”, were isolated from people with schizophrenia and implicated in their illness, but these findings were later discredited.

The mysterious GRIN3A is a new version of the hunt for an intrinsic mechanism that produces schizophrenia-like symptoms. GRIN3A is a gene that codes for the GluN3A subunit of the N-methyl-D-aspartate-type (NMDA) receptor, a target for the neurotransmitter glutamate in the brain. Functional NMDA receptors usually have two GluN1 subunits and two GluN2 subunits. The ability of glutamate to activate these receptors is blocked by PCP and the anesthetic/hallucinogen, ketamine. When the GluN3A subunit is incorporated, it prevents the NMDA receptor from being activated by glutamate, almost as if the receptor had been blocked by PCP.

It is unclear why the brain needs this mechanism for normal brain development and function, hence the mystery surrounding GRIN3A. One piece of evidence supporting a link between GluN3A and schizophrenia is the finding that GluN3A levels are elevated in the post-mortem brain tissue from people who had been diagnosed with schizophrenia.

In this issue of Biological Psychiatry, Japanese researchers led by Dr. Takeo Yoshikawa provide new support for this hypothesis by implicating variation in GRIN3A in the heritable risk for schizophrenia.

Schizophrenia is thought to have a substantial genetic background which is, to some extent, population-specific. Genome-wide searches have revealed many common genomic variants with weak effects, but the remaining “missing heritability” is largely unknown. Scientists theorize that it may be partly explained by rare variants with large effect.

To identify genetic variants with larger effect sizes, Yoshikawa and his colleagues examined genetic data from several Asian populations. They identified a rare variant in GRIN3A with study-wide significance.

“This discovery is important, because the ‘NMDA receptor hypothesis’ for schizophrenia is a common disease model,” said Yoshikawa. “We propose a novel point of therapeutic intervention in the NMDA receptor signaling system for schizophrenia.”

Dr. John Krystal, Editor of Biological Psychiatry, commented, “The notion that a genetic trait that acts like PCP in the brain produces schizophrenia is a very attractive but over-simplistic hypothesis. It is that the biology of schizophrenia is much more complicated than this single factor. Nonetheless, perhaps this study of GRIN3A brings us another step closer to understanding glutamate abnormalities in schizophrenia.”

The article is “A Population-Specific Uncommon Variant in GRIN3A Associated with Schizophrenia” by Atsushi Takata, Yoshimi Iwayama, Yasuhisa Fukuo, Masashi Ikeda, Tomo Okochi, Motoko Maekawa, Tomoko Toyota, Kazuo Yamada, Eji Hattori, Tetsuo Ohnishi, Manabu Toyoshima, Hiroshi Ujike, Toshiya Inada, Hiroshi Kunugi, Norio Ozaki, Shinichiro Nanko, Kazuhiko Nakamura, Norio Mori, Shigenobu Kanba, Nakao Iwata, Tadafumi Kato, and Takeo Yoshikawa (doi:...
Notes for Editors
Full text of the article is available to credentialed journalists upon request; contact Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact Takeo Yoshikawa at +81 48 467 5968 or takeo@brain.riken.jp.

The authors’ affiliations, and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry
Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 5th out of 129 Psychiatry titles and 16th out of 243 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2011 Impact Factor score for Biological Psychiatry is 8.283.

About Elsevier
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier’s online solutions include ScienceDirect, Scopus, Reaxys, ClinicalKey and Mosby’s Nursing Suite, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai’s Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading provider of professional information solutions in the Science, Medical, Legal and Risk and Business sectors, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media contact
Rhiannon Bugno
Editorial Office, Biological Psychiatry
+1 214 648 0880
Biol.Psych@utsouthwestern.edu