Disulfiram: New Support for an Old Addiction Drug

From a new study in Biological Psychiatry

Philadelphia, PA, January 31, 2013 – Disulfiram was the first medication approved for the treatment of alcoholism over 50 years ago. It works, at least in part, by preventing the metabolism of an alcohol by-product, acetaldehyde. High levels of acetaldehyde in the body quickly cause unpleasant symptoms, including nausea, vomiting, headache, and accelerated heart rate. Thus, disulfiram provides a very strong incentive to avoid drinking.

Beginning in the late 1990s, a series of studies conducted at Yale University found that disulfiram reduced the consumption of cocaine, particularly in the context of alcohol or opiate dependence. One mechanism introduced to explain this phenomenon was the ability of disulfiram to inhibit dopamine β-hydroxylase, or DβH, an enzyme that converts dopamine to norepinephrine. This hypothesis was supported in a new pharmacogenetic study by Thomas Kosten and colleagues, published in Biological Psychiatry.

The researchers recruited cocaine- and opioid-dependent patients who were randomized to receive either disulfiram or placebo for ten weeks. They also genotyped the DBH gene, which alters DβH levels, to determine which variant that each patient carried. Prior work has already shown that individuals with the CC genotype have normal DβH levels, whereas those carrying the T allele have lower DβH levels. This allowed them to determine whether the functional DBH variant influences the success of disulfiram treatment.

Disulfiram was effective in reducing cocaine use in patients with the CC genotype and normal DβH levels, whereas those with the low DβH level T genotype showed no disulfiram effect. These data support the hypothesis that disulfiram reduces drug consumption, in part, by blocking DβH.

Senior author David Nielsen at Baylor College of Medicine said, "We found significantly greater efficacy in cocaine addicts who carried a genetic variant of the dopamine β-hydroxylase gene that codes for an enzyme with 10 to 100 fold greater enzyme expression and occurs in about 60% of addicts. Thus, pharmacogenetic matching is critical for the optimal efficacy of disulfiram in cocaine addiction, and this matching includes the majority of these patients."

Disulfiram is not an FDA-approved treatment for cocaine addiction, and in fact, there are currently no approved medications to treat cocaine addiction.

"Cocaine has proven to be a particularly difficult challenge from the perspective of medication development. No doubt this reflects the powerful control that cocaine and cocaine-related cues exert on behavior. However, the current study suggests that pharmacogenetic approaches might be a strategy to match medications like disulfiram to patients who would be more likely to respond," commented Dr. John Krystal, Editor of Biological Psychiatry.

Notes for editors
Full text of the article is available to credentialed journalists upon request; contact Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact David A. Nielsen at +713 791-1414, ext 6289 or nielsen@bcm.edu.
The authors’ affiliations, and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry

Biological Psychiatry is the official journal of the *Society of Biological Psychiatry*, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 5th out of 129 Psychiatry titles and 16th out of 243 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2011 Impact Factor score for *Biological Psychiatry* is 8.283.

About Elsevier

Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including *The Lancet* and *Cell*, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier’s online solutions include ScienceDirect, Scopus, Reaxys, ClinicalKey and Mosby’s Nursing Suite, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai’s Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading provider of professional information solutions in the Science, Medical, Legal and Risk and Business sectors, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media contact

Rhiannon Bugno, Editorial Office
+214 648 0880
Biol.Psych@utsouthwestern.edu